Производящая функция
Версия от 23:52, 11 декабря 2011; Antonkov (обсуждение | вклад)
Содержание
Производящая функция
Определение: |
Производя́щая фу́нкция (generating function) — это формальный степенной ряд:
порождающий (производящий) последовательность , . |
Применение
Производящая функция используется для:
- Нахождения зависимости для последовательности , заданной рекуррентным соотношением. Например, для чисел Фибоначчи;
- Исследования асимптотического поведения последовательности;
- Доказательства тождеств с последовательностями;
- Решения задачи подсчета объектов в комбинаторике. Например, в доказательстве пентагональной теоремы или в задаче нахождения количества расстановок m ладей на доске n × n;
- Вычисления бесконечных сумм.
Решение рекуррентных соотношений
Пусть последовательность
удовлетворяет некоторому рекуррентному соотношению. Мы хотим получить выражение для (при ) в замкнутом виде (то есть выразив лишь через номер члена последовательности). Для демонстрации универсальности метода рассмотрим довольно произвольное рекуррентное соотношение:
Запишем производящую функцию для этой последовательности и преобразуем правую часть:
Для того, чтобы замкнуть последнюю сумму воспользуемся очень важным приемом, который используется при преобразовании производящих функций. Фактически мы имеем дело с последовательностью (у нас последовательность -константная единица). Такая последовательность получается путём дифференцирования функции B(z) с последующим умножением результата на z:
Тогда замкнем последнее слагаемое следующим образом:
Таким образом наше последнее слагаемое примет вид:
Это уравнение для производящей функции. Из него выражаем :