Эргодическая марковская цепь

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) [math]\pi = (\pi_1,\pi_2,\ldots )^{\top}[/math], такое что [math]\pi_i \gt 0,\; i \in \mathbb{N}[/math] и
[math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots[/math].


Определение:
Марковская цепь называется эргодической, если любое состояние цепи является эргодическим (состояние цепи Маркова эргодическим, если оно одновременно возвратно и непериодично).


Примеры графов переходов для цепей Маркова: a) цепь не является слабо эргодической (не существует общего стока для состояний [math]A_2, \, A_3[/math]); b) слабо эргодическая, но не эргодическая цепь (граф переходов не является ориентированно связным) c) эргодическая цепь (граф переходов ориентированно связен).


Пример

Пример эргодической цепи

Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Рассмотрим матрицу, следующего вида: [math]p_{ij}=0.5, i,j=1,2[/math].

Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение [math]\pi = (0.5,0.5)^{\top}[/math], такое что [math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2[/math].

См. также

Ссылки

Литература

Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"