Алгоритм Куна для поиска максимального паросочетания
Версия от 09:32, 24 декабря 2011; Русин Никита (обсуждение | вклад)
Содержание
Теорема
| Теорема: |
Если из вершины не существует дополняющей цепи относительно паросочетания и паросочетание получается из изменением вдоль дополняющей цепи, тогда из не существует дополняющей цепи в . |
| Доказательство: |
|
Алгоритм
- Алгоритм Куна — непосредственное применение теоремы Бержа.
- Алгоритм просматривает все вершины графа по очереди, запуская из каждой обход (в глубину или в ширину), пытающийся найти увеличивающую цепь, начинающуюся в этой вершине.
- Краткое описание алгоритма:
- Возьмём пустое паросочетание
- Пока в графе удаётся найти увеличивающую цепь, выполняем чередование паросочетания вдоль этой цепи
- Повторяем процесс поиска увеличивающей цепи.
- Если увеличивающую цепь найти не удалось — процесс останавливается
- Найденное паросочетание и является максимальным.
- Будем считать, что граф уже разбит на две доли.
- Просматриваем все вершины первой доли графа :
- Если текущая вершина уже насыщена текущим паросочетанием (т.е. уже выбрано какое-то смежное ей ребро), то эту вершину пропускаем
- Иначе — алгоритм пытается насытить эту вершину, для чего запускается поиск увеличивающей цепи, начинающейся с этой вершины.
- Рассмотрим поиск увеличивающей цепи обходом в глубину.
- Изначально обход в глубину стоит в текущей ненасыщенной вершине первой доли.
- Просматриваем все рёбра из этой вершины, пусть текущее ребро — .
- Если вершина ещё не насыщена паросочетанием, то, значит, мы смогли найти увеличивающую цепь: она состоит из единственного ребра .
- Включаем это ребро в паросочетание и прекращаем поиск увеличивающей цепи из вершины .
- Иначе, — если уже насыщена каким-то ребром , то попытаемся пройти вдоль этого ребра: тем самым мы попробуем найти увеличивающую цепь, проходящую через рёбра . Для этого просто перейдём в нашем обходе в вершину .
- Пробуем найти увеличивающую цепь из вершины .
- Этот обход, запущенный из вершины , либо найдёт увеличивающую цепь, и тем самым насытит вершину, либо же такой увеличивающей цепи не найдёт (и, следовательно, эта вершина уже не сможет стать насыщенной).
- После того, как все вершины будут просмотрены, текущее паросочетание будет максимальным.
Релизация
- Граф хранится списками смежности
- Функция - обход в глубину, возвращает если есть увеличивающая цепь из вершины .
- В массиве хранятся паросочетания. Паросочетание есть ребро .
bool dfs(int v)
{
if (used[v])
return false;
used[v] = true;
for (int i = 0; i < g[v].size(); i++)
{
int to = g[v][i];
if (mt[to] == -1 || dfs(mt[to]))
{
mt[to] = v;
return true;
}
}
return false;
}
int main()
{
... чтение графа ...
mt.assign (k, -1);
for (int v = 0; v < n; v++)
{
used.assign(n, false);
dfs(v);
}
for (int i = 0; i < k; i++)
if (mt[i] != -1)
... вывод ...
}
Время работы
- Итак, алгоритм Куна можно представить как серию из || запусков обхода в глубину на всём графе.
- Следовательно, всего этот алгоритм исполняется за время , что в худшем случае есть .
Источники
- MAXimal :: algo :: Алгоритм Куна нахождения наибольшего паросочетания
- Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — СПб.: Издательство "Лань", 2010. — 291 стр.