Теоретический минимум по математическому анализу за 3 семестр

Материал из Викиконспекты
Версия от 00:45, 8 января 2012; 192.168.0.2 (обсуждение) (6. Теорема о повторном применении процесса Каратеодори)
Перейти к: навигация, поиск

Содержание

1. Полукольцо и алгебра множеств (примеры)

Определение:
Пусть [math] X [/math] — некоторое множество, [math] \mathcal R [/math] — совокупность его подмножеств (не обязательно всех). Пара [math] (X, \mathcal R) [/math] называется полукольцом, если:
  1. [math] \varnothing \in \mathcal R [/math]
  2. [math] A, B \in \mathcal R \Rightarrow A \cap B \in \mathcal R [/math] (замкнутость относительно пересечения)
  3. [math] A, B \in \mathcal R, A \subset B \Rightarrow \exists D_1, \ldots, D_n, \ldots \in R: B \setminus A = \bigcup\limits_n D_n, D_n \in \mathcal R, D_i \cap D_j = \varnothing [/math] для [math] i \ne j [/math] (далее просто будем говорить, что эти множества дизъюнктны).


Определение:
Пусть [math] X [/math] — некоторое множество, [math] \mathcal A [/math] — совокупность его подмножеств. [math] \mathcal A [/math]алгебра, если:
  1. [math] \varnothing \in \mathcal A [/math]
  2. [math] B \in \mathcal A \Rightarrow \overline B = X \setminus B \in \mathcal A [/math]
  3. [math] B, C \in \mathcal A \Rightarrow B \cap C \in \mathcal A [/math]
[math] \mathcal A [/math] называется σ-алгеброй (сигма-алгеброй, счетной алгеброй), если третья аксиома усилена требованием принадлежности [math] \mathcal A [/math] пересечения счетного числа множеств


Примеры:

тут чего то написать...

2. Мера на полукольце множеств и ее основные свойства

Определение:
Пусть [math] (X, \mathcal R) [/math] — полукольцо. [math] m: \mathcal R \rightarrow \overline{\mathbb R}_{+}[/math] называется мерой на нем, если:
  1. [math] m(\varnothing) = 0 [/math]
  2. Для дизъюнктных [math] A_1, A_2, \ldots, A_n, \ldots \in \mathcal R [/math] и [math] A \in \mathcal R [/math], такого, что [math] A = \bigcup\limits_{n} A_n [/math], [math] m(A) = \sum\limits_n m(A_n) [/math] (сигма-аддитивность)

Два важных свойства на полукольце:

Пусть [math] m [/math] — мера на полукольце [math] \mathcal R [/math], тогда:

1) Для [math] A \in \mathcal R [/math] и дизъюнктных [math] A_1, A_2, \ldots, A_n, \ldots \in \mathcal R[/math] таких, что [math]\bigcup\limits_{n} A_n \subset A [/math] выполняется [math] \sum\limits_{n} m(A_n) \le m(A) [/math]

2) Для [math] A \in \mathcal R [/math] и [math] A_1, A_2, \ldots, A_n, \ldots \in \mathcal R[/math] таких, что [math]A \subset \bigcup\limits_{n} A_n [/math] выполняется [math] m(A) \le \sum\limits_{n} m(A_n) [/math] (сигма-полуаддитивность)

Замечание: в случае [math] n = 1[/math] второе свойство [math]A \subset B \Rightarrow m(A) \le m(B) [/math] называют монотоностью меры.

3. Внешняя мера, порожденная мерой на полукольце

Определение:
Внешняя мера на множестве [math] X [/math] - неотрицательная функция, заданная на множестве всех подмножеств [math] X [/math], и удовлетворяющая следующим аксиомам:

1) [math] \mu^* (\varnothing) = 0 [/math]

2) Для [math] A \subset \bigcup\limits_n A_n [/math] выполняется [math] \mu^*(A) \le \sum\limits_{n} \mu^*(A_n) [/math] (сигма-полуаддитивность)


Пусть заданы полукольцо [math] (X; \mathcal R) [/math] и мера [math] m [/math] на нем. Тогда для любого множества [math] A \subset X [/math]:

1) Полагаем [math] \mu^*(A) = + \infty [/math], если [math] A [/math] нельзя покрыть не более чем счетным количеством множеств из полукольца.

2) Полагаем [math] \mu^*(A) = \inf\limits_{A \subset \bigcup\limits_{n} E_n} \sum\limits_{n} m(E_n) [/math], в противном случае, то есть внешняя мера является нижней гранью множества мер для всех не более чем счетных покрытий [math] A [/math] из полукольца [math] \mathcal R [/math].

Теорема:
Определенная нами [math] \mu^* [/math] является корректной внешней мерой на [math] X [/math], при этом, для [math] A \in \mathcal R, \mu^*(A) = m(A) [/math].

4. Понятие о мю*- измеримых множествах. Доказательство основной теоремы

бла-бла-бла

5. Распространение меры с полукольца на сигма-алгебру по Каратеодори. Доказательство теоремы

бла-бла-бла

6. Теорема о повторном применении процесса Каратеодори

[math](m, \mathcal{R}) \to \mu^* \to (\mu, \mathcal{A}) \to \nu^*[/math].

Построим [math]\nu^*[/math] — внешнюю мера для [math](\mu, \mathcal{A})[/math]. Возникает вопрос: "Построили ли мы что-то новое?"

Теорема:
[math]\mu^*=\nu^*[/math] (повторное применение процесса Каратеодори не приводит нас к новой мере).

7. Критерий мю*-измеримости

бла-бла-бла

8. Объем многомерного параллелепипеда и его основные свойства

бла-бла-бла

9. Объем, как мера на полукольце ячеек

бла-бла-бла

10. Некоторые классы измеримых по Лебегу множеств (счетные, открытые, замкнутые)

бла-бла-бла

11. Теорема о внешней мере в R^n

бла-бла-бла

12. Структура измеримого по Лебегу множества

бла-бла-бла

13. Определение измеримых функций, теорема о множествах Лебега

бла-бла-бла

14. Арифметика измеримых функций

бла-бла-бла

15. Измеримость поточечного предела измеримых функций

бла-бла-бла

16. Эквивалентные функции и сходимость почти всюду

бла-бла-бла

17. Предел по мере и его единственность

бла-бла-бла

18. Теорема Лебега о связи сходимости п.в. и по мере

бла-бла-бла

19. Теорема Рисса

Теорема (Фердинанд Рисс):
Пусть последовательность функций сходится по мере к функции [math]f[/math] на [math]E[/math]. Тогда из неё можно выделить подпоследовательность, которая сходится почти всюду на [math]E[/math].

20. Теорема Егорова

Теорема (Егоров):
Пусть [math]\mu E \lt +\infty[/math], [math]f_n \to f[/math] почти всюду на [math]E[/math], [math]\delta \gt 0[/math]. Тогда [math]\exists E'' \subset E[/math], [math]\mu E'' \gt \mu E - \delta[/math], [math]f_n \stackrel{E''}{\rightrightarrows} f[/math]

21. Теоремы Лузина (без док-ва) и Фреше

Теорема (Лузин):
[math]E \subset \mathbb{R}^n[/math], [math]f[/math] — измерима на [math]E[/math] по мере Лебега. Тогда [math]\forall\varepsilon\gt 0\ \exists \varphi[/math] — непрерывная на [math]\mathbb{R}^n[/math], [math]\lambda_nE(f\ne\varphi)\lt \varepsilon[/math]

Это принято называть [math]C[/math]-свойством Лузина.

Если, помимо всего прочего, [math]f(x)[/math] ограничена [math]M[/math] на [math]E[/math], то [math]\varphi[/math] можно подобрать таким образом, что она ограничена той же постоянной на [math]\mathbb{R}^n[/math].

Теорема (Фреше):
[math]E\subset \mathbb{R}^n[/math], [math]f[/math] — измерима на [math]E[/math]. Тогда [math]\exists\varphi_n[/math] — последовательность непрерывных на [math]\mathbb{R}^n[/math] функций, такая, что [math]\varphi_n\to f[/math] почти всюду на [math]E[/math].

22. Суммы Лебега-Дарбу и их свойства, определение интеграла Лебега, совпадение интеграла Римана с интегралом Лебега

бла-бла-бла

23. Интегрируемость ограниченной, измеримой функции

бла-бла-бла

24. Счетная аддитивность интеграла

бла-бла-бла

25. Абсолютная непрерывность интеграла

бла-бла-бла

26. Арифметические свойства интеграла Лебега

бла-бла-бла

27. Теорема Лебега о предельном переходе под знаком интеграла

бла-бла-бла

28. Определение интеграла от суммируемой функции

бла-бла-бла

29. Сигма-аддитивность интеграла неотрицательных функций

бла-бла-бла

30. Арифметические свойства интеграла неотрицательных функций

бла-бла-бла

31. О распространении основных свойств интеграла Лебега на суммируемые функции произвольного знака

бла-бла-бла

32. Теорема Лебега о мажорируемой сходимости

бла-бла-бла

33. Теорема Б.Леви и следствие о ряде из интегралов

бла-бла-бла

34. Теорема Фату

бла-бла-бла

35. Неравенства Гельдера и Минковского

бла-бла-бла

36. Пространства, полнота

бла-бла-бла

37. Всюду плотность множества С в пространствах

бла-бла-бла

38. Мера цилиндра

бла-бла-бла

39. Мера подграфика

бла-бла-бла

40. Вычисление меры множества посредством его сечений

бла-бла-бла

41. Теорема Фубини

бла-бла-бла