Симметричное отношение
Бинарное отношение на множестве называется симметричным, если для каждой пары элементов множества выполнение отношения влечёт выполнение отношения .
| Определение: | 
| Отношение симметрично, если . | 
Отношение достижимости вершин неориентированного графа симметрично. Матрица симметричного отношения является симметричной относительно главной диагонали, т.е., формально, симметричной называют такую матрицу , что .
Примером антисимметричного отношения является отношение связи вершин направленного ациклического графа.
Любое отношение эквивалентности, по определению, является симметричным (а также рефлексивным и транзитивным). Также любое отношение толерантности является симметричным (а также рефлексивным, но при этом не транзитивным).
Не являются симметричными (за исключением случая тождественной ложности отношения) отношения порядка (как полного, так и частичного).
Примеры симметричных отношений
-  Отношения эквивалентности:
- отношение равенства
- отношение сравнимости по модулю
- отношение равномощности множеств
- отношение параллельности прямых и плоскостей
- отношение подобия геометрических фигур
 
-  Отношения толерантности:
- отношение "знакомства"
- отношение "наличие общего свойства"
 
