Построение по НКА эквивалентного ДКА, алгоритм Томпсона
Версия от 06:04, 21 января 2012; 192.168.0.2 (обсуждение)
Построение эквивалентного ДКА по НКА
Пусть нам дан произвольный НКА: .
Построим по нему следующий ДКА: , где:
- ,
- ,
- ,
- .
Доказательство эквивалентности
Теорема: |
Построенный ДКА эквивалентен данному НКА. |
Доказательство: |
|
Алгоритм Томпсона
Данный алгоритм преобразовывает НКА в эквивалентный ДКА. Будем использовать вышеуказанный способ построения с одним дополнением — не будем учитывать состояния недостижимые из стартового. Поэтому в алгоритме используется обход в ширину.
Алгоритм
— очередь состояний, соответствующих множествам, состоящих из состояний НКА. — стартовое состояние НКА.
.push({ }) while not isEmpty( ) .pop( ) for = for = if ( haven't been in ) .push( )
Асимптотика
Так как количество подмножеств множества состояний НКА не более, чем
, а каждое подмножество мы обрабатываем ровно один раз за время , получаем верхнюю оценку времени работы алгоритма — .Пример
Пусть нам дан недетерменированный конечный автомат:
По нашему заданию эквивалентного ДКА мы получаем:
- Помещаем в очередь множество из одной стартовой вершины — : .
- Достаём из очереди множество : .
- , кладём множество в очередь: .
- , нам не надо класть множество в очередь, так как оно уже там было.
- Достаём из очереди множество : .
- , нам не надо класть множество в очередь, так как оно уже там было.
- , нам не надо класть множество в очередь, так как оно уже там было.
- Помечаем все терминальные вершины, в данном случае — .