Материал из Викиконспекты
Теорема: |
Существуют такие оракулы [math]A[/math] и [math]B[/math], что [math]\mathrm{P^A} = \mathrm{NP^A} [/math] и [math]\mathrm{P^B} \ne \mathrm{NP^B} [/math] |
Доказательство: |
[math]\triangleright[/math] |
- Покажем существование такого оракула [math]A[/math], что [math]\mathrm{P^A} = \mathrm{NP^A} [/math]. Рассмотрим язык [math] \mathrm{TQBF} = \{ \Phi | \Phi \--[/math] булева формула с кванторами [math], \Phi = 1\}[/math]. [math] \mathrm{TQBF} [/math] является [math]PS[/math]-полным языком.
- [math] \mathrm{P} \subset \mathrm{NP} \Rightarrow \mathrm{P^{TQBF}} \subset \mathrm{NP^{TQBF}} [/math]
- [math]T(p,x) \ge S(p, x)[/math], для любых [math]p, x \Rightarrow \mathrm{NP^{TQBF}} \subset \mathrm{NPS^{TQBF}}[/math]
- По теореме Сэвича [math] \mathrm{NPS^{TQBF}} = \mathrm{PS^{TQBF}} [/math]
- [math] \mathrm{TQBF} \in \mathrm{PS} \Rightarrow \mathrm{PS^{TQBF}} = \mathrm{PS} [/math]
- [math] \mathrm{TQBF} \-- \mathrm{PS}[/math]-полная [math]\Rightarrow \mathrm{PS} \in \mathrm{P^{TQBF}}[/math]
Следовательно, [math]\mathrm{P^{TQBF}} = \mathrm{NP^{TQBF}}[/math]
- {Покажем существование такого оракула [math]B[/math], что [math]\mathrm{P^B} \ne \mathrm{NP^B} [/math]. Пусть [math]B\--[/math] произвольное множество, а [math]U_B = \{1^n | \exists x[/math], что [math]|x| = n\}[/math]. Ясно, что [math]\forall B: U_B \in \mathrm{NP^B}[/math] (легко написать программу, проверяющую сертификат). Построим такое множество [math]B[/math], что [math]U_B \not\in \mathrm{P^B}[/math]. Рассмотрим последовательность машин Тьюринга [math]M_i[/math], имеющих доступ к оракулу языка [math]B[/math]. Построение множество [math]B[/math] разделим на счетное число шагов. Будем строить [math]B[/math] так, что на [math]i-[/math]м шаге выполнено: [math]T(M_i, x) \ge 2^n[/math]. Очевидно, что это утверждение сильнее, чем [math]U_B \not\in \mathrm{P_B}[/math]. Начнем поэтапно строить множество [math]B[/math].
- 0-й шаг: [math]B \leftarrow \emptyset [/math]
- [math]i[/math]-й шаг. Будем считать шаги с 0-го по [math](i-1)[/math]-й сделаны. Тогда в [math]B[/math] на данном этапе содержится конечное число слов. Пусть самое длинное из них состоит из [math](n-1)[/math]-го символа. Запустим машину [math]M_i[/math] на входе [math]1^n[/math] на [math]2^n[/math] шагов. Когда [math]M_i[/math] требуется ответ оракула языка [math]B[/math] о слове [math]x[/math], происходит следующее:
- Если принадлежность [math]x[/math] множеству [math]B[/math] была определена на предыдущем шаге, то она сохраняется.
- Если принадлежность [math]x[/math] множеству [math]B[/math] не установлена ранее, то далее считаем, что [math]x \not\in B[/math].
Но [math]M_i[/math] могла остановится раньше, чем за [math]2^n[/math] шагов и вернуть какое-либо значение.
- Если [math]M_i[/math], то будем считать, что в [math]B[/math] не содержится слов вида [math]\{0,1\}^n[/math]}
|
[math]\triangleleft[/math] |