Введём понятие арифметизации булевых формул. Пусть нам дана формула [math]\phi(x_1 \ldots x_m)[/math]. Сделаем следующие преобразования и получим формулу [math]A_\phi(x_1, x_2, \ldots, x_m)[/math]:
- [math]x_i \to x_i[/math];
- [math]\lnot x \to 1 - x[/math];
- [math]\varphi \land \psi \to A_\varphi \cdot A_\psi[/math];
- [math]\varphi \lor \psi \to 1 - (1 - A_\varphi) \cdot (1 - A_\psi)[/math];
Заметим, что [math]|A_\phi| \le C |\phi|[/math] , где [math]C[/math] — некоторая константа.
Лемма (1): |
[math]\phi(x_1 \ldots x_m) = A_\phi(x_1, \ldots, x_m)[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Непосредственно следует из построения. |
[math]\triangleleft[/math] |
Для арифметизации булевых формул с кванторами добавим еще два правила преобразования:
- [math]\exists x \varphi(x) \to \sum\limits_{x=0}^{1} A_\varphi(x)[/math];
- [math]\forall x \varphi(x) \to \prod\limits_{x=0}^{1} A_\varphi(x)[/math].
Будем обозначать через [math]Q_i[/math] квантор, связывающий переменную [math]x_i[/math]. Через [math]R_i[/math] будем обозначать операцию, в которую преобразуется квантор [math]Q_i[/math] в процессе арифметизации.
Заметим, что любую булеву формулу можно привести к виду [math]Q_1 \ldots Q_m \phi(x_1, \ldots, x_m)[/math], где [math]\phi[/math] — формула, не содержащая кванторов. Кроме того, в процессе арифметизации [math]Q_1 \ldots Q_m \phi(x_1, \ldots, x_m)[/math] переходит в [math]R_1 \ldots R_m A_\phi(x_1, \ldots, x_m)[/math]. Поэтому далее будем рассматривать только формулы, которые имеют вид, указанный выше.
Лемма (2): |
Пусть [math]Q_1 \ldots Q_m \phi(x_1, \ldots, x_m)[/math] — булева формула с кванторами, переходящая в процессе арифметизации в [math]s = R_1 \ldots R_m A_\phi(x_1, \ldots, x_m)[/math].
[math]c_1, \ldots, c_m[/math] — двоичные константы.
Обозначим через [math]A_i(x_{i+1}) = R_{i+2} \ldots R_m A_\phi(c_1, \ldots, c_i, x_{i+1}, \ldots, x_m)[/math], где [math]0 \le i \le m - 1[/math]. Тогда:
-
- Если [math]R_1 = \sum[/math], то [math]A_0(0) + A_0(1) = s[/math];
- Если [math]R_1 = \prod[/math], то [math]A_0(0) \cdot A_0(1) = s[/math].
- [math]\forall i : 1 \le i \le m - 1[/math]
- Если [math]R_{i+1} = \sum[/math], то [math] A_i(0) + A_i(1) = A_{i-1}(c_i)[/math];
- Если [math]R_{i+1} = \prod[/math], то [math]A_i(0) \cdot A_i(1) = A_{i-1}(c_i)[/math].
|
Доказательство: |
[math]\triangleright[/math] |
Докажем пункты 1.1 и 2.1. Для остальных пунктов доказательство аналогично.
1.1. [math]s=\sum\limits_{x_1 = 0}^{1}R_2\ldots R_m(x_1, x_2, \ldots, x_m)=R_2 \ldots R_m[/math][math](0, x_2, \ldots, x_m) + R_2 \ldots R_m(1, x_2, \ldots, x_m)=A_0(0) + A_0(1)[/math].
2.1. [math]A_{i-1}(c_i)=\sum\limits_{x_{i+1} = 0}^{1}R_{i+2}\ldots R_m[/math][math](c_1, \ldots, c_{i-1}, c_i, x_{i+1}, \ldots x_m)=R_{i+2} \ldots R_m[/math][math](c_1, \ldots, c_i, 0, x_{i+2}, \ldots, x_m) + R_{i+2} \ldots R_m[/math][math](c_1, \ldots, c_i, 1, x_{i+2}, \ldots, x_m)=A_i(0) + A_i(1)[/math]. |
[math]\triangleleft[/math] |
Определение: |
Оператором линеаризации будем называть оператор [math]L_{i}A(x_i)=(1-x_i) \cdot A[/math][math](0)+x_i \cdot A(1)[/math]. |
Заметим, что оператор линеаризации уменьшает степень [math]x_i[/math] до единицы, при этом полученная формула эквивалентна исходной. Кроме того, если дано выражение [math]R_1 \ldots R_m A_\phi(x_1, \ldots, x_m)[/math], то [math]L_{i}[/math] можно вставить в список [math]R_1,\ldots,R_m[/math] в любое место, после операции [math]R_i[/math] (для того, чтобы выражение, на которое действует оператор, было функцией от [math]x_i[/math]). При этом значение выражения не изменится. Операторы [math]L_i[/math] и [math]L_j[/math] можно вставлять в выражение независимо друг от друга для любых [math]1 \le i, j \le m[/math]. Для оператора линеаризации можно сформулировать лемму, аналогичную лемме (2).
Лемма (3): |
Пусть [math]Q_1 \ldots Q_m \phi(x_1, \ldots, x_m)[/math] — булева формула с кванторами, переходящая в процессе арифметизации в [math]s = R_1 \ldots R_m A_\phi(x_1, \ldots, x_m)=R_1 \ldots R_{i+1} L_j R_{i+2}\ldots R_m A_\phi(x_1, \ldots, x_m)[/math], [math]j \lt i + 2[/math].
[math]c_1, \ldots, c_m[/math] — двоичные константы.
[math]A_{i}'(x_1,\ldots,x_{i+1}) = L_j R_{i+2} \ldots R_m A_\phi(x_1, \ldots, x_m)[/math]
[math]A_{i}(x_1,\ldots,x_{i+1}) = R_{i+2} \ldots R_m A_\phi(x_1, \ldots, x_m)[/math]
Тогда
[math]A_i'(c_1,\ldots,c_{i+1}) = (1-c_j) \cdot A_i[/math][math](c_1,\ldots,c_{j-1},0,c_{j+1},\ldots,c_{i+1}) + c_j \cdot A_i(c_1,\ldots,c_{j-1},1,c_{j+1},\ldots,c_{i+1})[/math]. |