Сортировка Хана
Версия от 22:30, 10 июня 2012; Da1s60 (обсуждение | вклад)
Сортировка Хана (Yijie Han) — сложный алгоритм сортировки целых чисел со сложностью
, где — количество элементов для сортировки.Содержание
Алгоритм
Алгоритм построен на основе экспоненциального поискового дерева (далее - Э.П.дерево) Андерсона (Andersson's exponential search tree). Сортировка происходит за счет вставки целых чисел в Э.П.дерево.
Andersson's exponential search tree
Э.П.дерево с
листьями состоит из корня и (0< <1) Э.П.поддеревьев, в каждом из которых листьев; каждое Э.П.поддерево является сыном корня . В этом дереве уровней. При нарушении баланса дерева, необходимо балансирование, которое требует времени при вставленных целых числах. Такое время достигается за счет вставки чисел группами, а не по одиночке, как изначально предлагает Андерссон.Необходимая информация
Определение: |
Контейнер - объект определенного типа, содержащий обрабатываемый элемент. Например __int32, __int64, и т.д. |
Определение: |
Алгоритм сортирующий | целых чисел из множества {0, 1, ..., - 1} называется консервативным, если длина контейнера (число бит в контейнере), является Если длина больше, то алгоритм не консервативный.
Определение: |
Для множества min( Набор ) = min( : принадлежит ) max( ) = max( : принадлежит ) < если max( ) <= min( ) | определим
Уменьшение числа бит в числах
Один из способов ускорить сортировку - уменьшить число бит в числе. Один из способов уменьшить число бит в числе - использовать деление пополам (эту идею впервые подал van Emde Boas). Деление пополам заключается в том, что количество оставшихся бит в числе уменьшается в 2 раза. Это быстрый способ, требующий
памяти. Для своего дерева Андерссон использует хеширование, что позволяет сократить количество памяти до . Для того, чтобы еще ускорить алгоритм нам необходимо упаковать несколько чисел в один контейнер, чтобы затем за константное количество шагов произвести хэширование для всех чисел хранимых в контейнере. Для этого используется хэш функция для хэширования чисел в таблицу размера за константное время, без коллизий. Для этого используется хэш функция авторства: Dierzfelbinger и Raman. Алгоритм: Пусть целое число >= 0 и пусть = {0, ..., 2^ - 1}. Класс H_{b,s} хэш функций из в {0, ..., 2^ - 1} определен как H_{b,s} = { | 0 < < 2^ , и нечетно} и для всех из : mod 2^ ) div 2^{b - s}</tex>