Black-box Complexity. Примеры нереалистичных оценок Black-box Complexity
Содержание
Введение в Black-box complexity
Целью теории сложности является определение вычислительной трудности алгоритмов. Классическая теория сложности предполагает, что алгоритму полностью известна структура решаемой задачи. В случае эволюционных алгоритмов, алгоритм обладает информацией только о качестве (значении fitness функции) получаемого им решения. По этой причине утверждения классической теории сложности мало применимы для эволюционных алгоритмов.
Black-box Complexity — попытка построить теорию сложности для эволюционных алгоритмов. Вкратце, black-box complexity алгоритма — количество вычислений fitness функции, необходимое для получения решения. Такое определение позволяет получить не реалистично низкие оценки black-box complexity, например, полиномиальную сложность для
-полной задачи поиска максимальной клики.По этой причине были введены ограничения на исследуемые алгоритмы. Требуется, чтобы для получения новых кандидатов на решение использовались только несмещенные (позиция элемента в битовой строке и его значение не влияют на выбор битов для изменения) вариативные операторы. Так же введено понятие арности —
-арный несмещенный black-box алгоритм использует только те операторы, которые принимают не более чем аргументов. Для некоторых классов задач такой подход к опеределению black-box complexity позволяет получить более реалистичные оценки сложности. Операторы с арностью называют мутационными. В данной статье показано, что даже для алгоритмов, использующих только мутационные операторы можно получить не реалистично маленькую оценку black-box complexity.Неограниченная и несмещенная Black-box модели
Обозначения
- — положительные целые числа;
- ;
- ;
- для битовой строки
- — побитовое дополнение строки ;
- — побитовое исключающее или;
- для любого множества
- — множество всех подмножеств множества
- для
- — множество всех перестановок ;
- для и
- ;
- под понимается натуральный логарифм.
Неограниченная Black-box модель
Рассматривается класс алгоритмов оптимизации, которые получают информацию о решаемой задаче через вычисление fitness функции возможных решений. Заданная fitness функция вычисляется ораклом, или дается как black-box. Алгоритм может запросить у оракла значение функции для любого решения, однако более никакой информации о решении получить не может.
В качестве fitness функции берется псевдо-булевая функция
.Согласно концепции black-box, алгоритм может включать следующие действия:
- выбор вероятностного распределения над ;
- выбор кандидата cогласно выбранному распределению;
- запрос значения fitness функции выбранного кандидата у оракла.
Схема неограниченного black-box алгоритма:
Инициализация: выбратьсогласно некоторому вероятностному распределению над . Запросить . Оптимизация: for until условие остановки do Исходя из , выбрать вероятностное распределение над . Выбрать согласно и запросить .
В качестве времени работы black-box алгоритма берется количество запросов к ораклу сделанное до первого запроса с оптимальным решением.
Пусть
— класс псевдо-булевых функций. Сложностью алгоритма над называется максимальное предположительное время работы на функции (в худшем случае). Сложностью относительно класса алгоритмов называется минимальная сложность среди всех над . Неограниченной black-box сложностью называется сложность относительно класса неограниченных black-box алгоритмов.Несмещенная Black-box модель
Класс неограниченных black-box алгоритмов слишком мощный. Например для любого функционального класса
неограниченная black-box сложность равна единице — алгоритм, который просто запрашивает оптимальное решение первым же шагом, удовлетворяет этому условию.Чтобы избежать этих недостатков была введена более строгая модель. В ней алгоритмы могут генерировать новые решения используя только несмещенные вариативные операторы.
Определение: |
| -арным несмещенным распределением называется семейство вероятностных распределений над таких, что для любых выполняются следующие условия:
Первое условие называется -инвариантностью, второе — перестановочной инвариантностью. Оператор, выбранный из -арного несмещенного распределения называется -арным несмещенным вариативным оператором.
Схема
-арного несмещенного black-box алгоритма:Инициализация: выбратьравновероятно из . Запросить . Оптимизация: for until условие остановки do Исходя из , выбрать индексов и -арное несмещенное распределение . Выбрать согласно и запросить .
Лемма: |
Предположим, что для задачи существует black-box алгоритм , который с константной вероятностью успеха решает за итераций. Тогда black-box сложность не больше . |
Jump функции
Определение: |
Будет показано, что для любого константного можно с высокой вероятностью решить проблему за малое количество black-box обращений к . С помощью этого можно показать, что для любого константного несмещенная black-box сложность для функции удивительно мала.
Лемма: |
существует унарная несмещенная процедура , использующая запросов к такая, что для всех битовых строк , с вероятностью . |
Доказательство: |
Используется унарный несмещенный вариативный оператор , который равновероятно выбирает строку из -окрестности для аргумента (битовую строку, которая отличается в позициях). Затем будет использована процедура , которая использует для аппроксимации как показано ниже. Процедура выбирает битовых строк в -окрестности . Если , то правдоподобно, что хотя бы раз только единицы из будут заменены, что приведет к тому, что . Так как больше никакая строка из выборки не будет иметь более низкое значение, то добавление к минимальному ненулевому значению других строк из выборки приведет к нужному результату. Случай, когда , аналогичен.Понятно, что процедура верна при всех , таких, что . Остальные два случая симметричны, поэтому пусть . Очевидно, что результат процедуры корректен тогда и только тогда, когда хотя бы в одной из строк были заменены только единицы. Вычислим вероятность этого события. Мы выбираем бит для замены итеративно, поэтому после итераций имеется как минимум позиций с единицей из позиций, которые можно выбирать. Это приводит к границе на вероятность выбора единиц:используя неравенство Бернулли. Таким образом имеем:
Процедура :ifthen output ; ; if then ; else ; output ; |
Теперь, используя предыдущую лемму, можно найти несмещенную black-box сложность для функции при константном .
Теорема: |
Для константы несмещенная black-box сложность :
|
Процедуре из леммы для работы необходимо знание параметра . Процедуру можно модифицировать таким образом, что она будет работать без этого знания. Как только процедура впервые выберет случайную битовую строку с она определит , затем продолжит работу как было описано раньше. Параметр определяется с помощью выбора достаточно большого количества случайных строк в -окрестности от строки с , начиная с и продолжая до тех пор, пока не станет отличным от нуля. Эта строка будет иметь максимальное значение . Из этого значения и процедура может вычислить .