Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта
Версия от 02:45, 19 июня 2012; 94.188.9.71 (обсуждение)
Оптимальный коэффициент апроксимации для произвольного Парето-фронта из n точек ограничивается
. Докажем, что он равен асимптотическому коэффициенту апроксимации для множества из n точек максимизирующих значение индикатора гиперобъема.Рассмотрим функции вида:
, где убывает и . Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .Множество всех таких функций обозначим через
.Для данного класса функций множества размера . Верхняя граница задает нижнюю границу для коэффициента апроксимации, который может быть достигнут для любого множества решения. В статье [1], п. 4 приведено доказательство того, что для множества максимизирующего значение индикатора гиперобъема мы можем имеем верхнюю границу = = для коэффициента апроксимации.
имеют оптимальный аппроксимационный коэффициент:
Основные определения
Определение: |
Множество , где ( доминирует ) - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. | называется Парето оптимальным, если:
Определение: |
Множество решений | называется -аппроксимацией функции , если:
Определение: |
Коэффицентом аппроксимации функции | на равен: аппроксимация
Определение: |
Оптимальный коэффицент аппроксимации |
Определение: |
Индикатор называется эластичным по Парето(Pareto-compliant), если для любых двух множеств решения | и значение индикатора для больше значения для тогда и только тогда, когда доминирует .
Определение: |
Пусть дано множество решения Гиперобъем является единственным унарным индикатором эластичным по Парето(Pareto-compliant). , где через обозначена мера множества | . Пусть также множество всех решений усечено некоторой точкой . Тогда: