Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта

Материал из Викиконспекты
Версия от 05:14, 19 июня 2012; Epanchenko (обсуждение | вклад) (Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем)
Перейти к: навигация, поиск

Основные определения

Определение:
Множество [math]X^* \subseteq X[/math] называется Парето оптимальным, если:

[math]\mathrm{\forall x^* \subset X^* \not \exists x \subset X : x \succ x^*}[/math], где [math] x \succ x^* [/math]([math]x[/math] доминирует [math]x^*[/math])[math] \leftrightarrow \left( \forall i \in 1 \ldots d: f_i(x) \gt f_i(x^*) \right) \bigwedge \left( \exists i \in 1 \ldots d: f_i(x) \gt f_i(x^*)\right)[/math]

[math]P(X^*)[/math] - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время.


Определение:
Множество решений [math]\mathrm{X=(x_1,x_2, \ldots , x_n)}[/math] называется [math]\alpha[/math]-аппроксимацией функции [math]f \in \mathbb{F}[/math], если:

[math]\mathrm{\forall x \in [a,A] \exists x_i \in X : (x \leq \alpha x_i) \bigwedge (f(x) \leq \alpha f(x_i))}[/math]

Коэффицент аппроксимации функции [math]f[/math] на [math]X[/math] равен: [math]\mathrm{\alpha (f, X) = inf \{\alpha | X} - \alpha[/math] аппроксимация [math]f \}[/math]

Оптимальный коэффицент аппроксимации [math]\alpha_{opt} = \sup \limits_{f \in \mathbb{F}} \inf \limits_{x \in \mathbb{X}} \alpha (f, X)[/math]


Свзяь между максимизацией гиперобъема и аппроксимацией Парето-фронта

Рассмотрим функции вида: [math]f:[a,A] \rightarrow [b,B][/math], где [math]f[/math] убывает и [math]f(a)=B, f(A)=b[/math]. Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков [math] [a,A][/math] и [math][b,B] [/math]. Так как для фиксированных констант [math] \mu , \nu [/math] функция [math] f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ][/math] и [math] f^*= \nu f(x/ \mu ) [/math] имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений [math]A/a[/math] и [math]B/b[/math].

Множество всех таких функций обозначим через [math]\mathbb{F}[/math]. Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.

Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n ([math] \alpha _{OPT}[/math]) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема ([math] \alpha _{HYP}[/math]) и докажем, что для количества точек [math] n [/math] они одинаковы, а именно [math] 1 + \Theta ( \frac{1}{n}) [/math].

Индикатор гиперобъема

Определение:
Пусть дано множество решения [math]\mathrm{X \in \mathbb{R}^d}[/math]. Пусть также множество всех решений усечено некоторой точкой [math]\mathrm{r = \left(r_1, r_2, \ldots, r_d \right)}[/math]. Тогда:

[math]\mathrm{HYP\left(X\right)=VOL\left( \bigcup\limits_{\left(x_1, x_2, \ldots, x_d \right) \in X} \left[ r_1, x_1\right] \times \left[ r_2, x_2\right] \times \cdots \times \left[ r_d, x_d\right] \right)}[/math], где через [math]VOL(X)[/math] обозначена мера множества [math]X[/math] по Лебегу.

Гиперобъем является единственным унарным индикатором эластичным по Парето(Pareto-compliant).
Утверждение:
Пусть [math]f \in \mathbb{F}, n \in \mathbb{N}[/math]. Тогда существует, не обязятельно единственное, множество решения [math]X \in \mathbb{X}[/math], которое максимизирует значение [math]HYP(X)[/math] на [math]\mathbb{X}[/math]
[math]\triangleright[/math]
См. [Гиперобъем]
[math]\triangleleft[/math]

Нахождение лучшего коэффициента аппроксимации

[Доказательство] ограничивает значение оптимального коэффицента апроксимации сверху: [math]1 + \frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}[/math] = [math] 1 + \Theta ( \frac{1}{n}) [/math].

Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем

Утверждение:
Пусть [math]f \in \mathbb{F}, n \geq 3[/math] и [math]X= \left(x_1, x_2, \ldots, x_d \right) \in X [/math].

Тогда [MINCON] данного множество решения:

[math]MINCON(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n-2)^2}[/math]
[math]\triangleright[/math]

Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значенияями. Пусть [math]a_i, b_i[/math] - длины сторон соответствующего прямоугольника, тогда:

[math] a_i \geq MINCON(X)/b_i, \forall 2 \leq i \leq n - 1[/math]

Это означает:

[math] \sum\limits_{i=2}^{n-1} MINCON(x)/b_i \leq \sum\limits_{i=2}^{n-1} a_i \leq \sum\limits_{i=2}^{n} a_i = \sum\limits_{i=2}^{n} x_i - \sum\limits_{i=1}^{n-1} x_i = x_n - x_1 [/math]

и поэтому: [math]MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i=2}^{n-1}1/b_i}[/math]

Так как среднее гармоническое меньше чем среднее арифметическое:

[math] \frac{n - 2}{\sum\limits_{i=2}^{n-1}1/b_i} \leq \frac{\sum\limits_{i=2}^{n-1}1/b_i}{n - 2}[/math]

Преобразуя, получаем искомое.
[math]\triangleleft[/math]

Далее необходимо посчитать коэффициент аппроксимации для "внутренних" ([math]x \in [x_1, x_n][/math]) и "внешних" точек [math]x \lt x_1[/math] или [math]x \gt x_n[/math].

Теорема (Автор утверждения (необязательно), О чем утверждение (необязательно)):
утверждение
Доказательство:
[math]\triangleright[/math]
доказательство (необязательно)
[math]\triangleleft[/math]
Теорема (Автор утверждения (необязательно), О чем утверждение (необязательно)):
утверждение
Доказательство:
[math]\triangleright[/math]
доказательство (необязательно)
[math]\triangleleft[/math]

Совместно Теоремы 1 и 2 приводят к следующим следствиям:

{{Следствие
|id=идентификатор (необязательно), пример: proposal1. 
|author=Автор утверждения (необязательно)
|about=О чем утверждение (необязательно)
|statement=утверждение
|proof=доказательство (необязательно)
}}

В статье [1], п. 4 приведено доказательство того, что для данного вида функций всегда существует множество решение, максимизирующее значение индикатора гиперобъема, а также устанавливает значение коэффициент аппроксимации значением: [math]1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}[/math] = [math] 1 + \Theta ( \frac{1}{n}) [/math].

Примечание

Конечно, зависимость от [math] [a,A][/math] и [math][b,B] [/math] в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже Вы можете увидеть пример поведения данных значений для определенного класса функций.

Untitled.jpg


Источники

  1. Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation