Факторгруппа
Эта статья требует доработки!
- Требуется еще несколько примеров факторгрупп.
- Требуется пример группы и ее подгруппы (не нормальной), для которых не является группой.
Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).
Факторгруппа
Рассмотрим группу и ее нормальную подгруппу . Пусть — множество смежных классов по . Определим в групповую операцию по следующему правилу.
Определение: |
Произведением смежностных классов | и назовем смежностный класс .
Утверждение: |
Определение произведения смежных классов корректно. То есть произведение смежных классов не зависит от выбранных представителей и . |
Пусть В самом деле, . Докажем, что . Достаточно показать, что . . Элемент лежит в по свойству нормальности . Следовательно, . |
Определение: |
Таким образом, множество смежных классов | с введенной на нем операцией произведения образует группу, которая называется факторгруппой по . Нейтральным элементом является , обратным к — .
Примеры
- Рассмотрим и её нормальную подгруппу , тогда (группы вычетов по модулю ) будет являться факторгруппой G по H.
- Рассмотрим группу невырожденных матриц . Отображение является гомоморфизмом . Ядро — группа матриц с единичным определителем . Поэтому является нормальной подгруппой в и факторгруппа .
- Подгруппа ортогональных матриц не является нормальной. Рассмотрим любую матрицу и проверим ортогональность матрицы : . То есть , что и означает, что не является нормальной подгруппой .