Теоретический минимум по математическому анализу за 4 семестр
1 Определение ряда Фурье, теорема о коэффициентах тригонометрического ряда, сходящегося в
Определение: |
То есть, . | — совокупность -периодических функций, суммируемых с -й степенью на промежутке .
Определение: |
Тригонометрическим рядом называется ряд:
Если, начиная с какого-то места, . , то соответствующая сумма называется тригонометрическим полиномом. |
Теорема: |
Пусть тригонометрический ряд сходится в и имеет суммой функцию . Тогда для него выполняются формулы Эйлера-Фурье:
. |
Определение: |
Пусть функция | . Ряд Фурье — тригонометрический ряд, коэффициенты которого вычислены по формулам Эйлера-Фурье.
2 Ядра Дирихле и Фейера
Определение: |
— тригонометрический полином такого вида называется ядром Дирихле. |
Определение: |
— интеграл Дирихле. |
Определение: |
. В такой форме записи частичная сумма называется интегралом свертки c ядром . |
Определение: |
— тригонометрический полином такого вида называется ядром Фейера. |
3 Способы суммирование рядов в НП (нормированное пространство)
TODO: пилим
4 Теорема Фробениуса
TODO: пилим
5 Тауберова теорема Харди для метода средних арифметических суммирования рядов в нормированном пространстве
TODO: пилим
6 Теорема Фейера
TODO: пилим
7 Следствие о двух пределах
Утверждение (следствие Фейера о двух пределах): |
Пусть точка — регулярная, тогда в ней |
Пусть .Так как , по определению предела .Для таких : ,и интересующий нас интеграл .Значит, условие теоремы Фейера для данного интеграла выполняется, и в регулярной точке, В частности, в точке непрерывности функции суммы Фейера всегда сходятся к значению функции в данной точке. . |
8 Всюду плотность множества в пространствах
TODO: пилим
9 Теорема Фейера в пространствах
.
10 Наилучшее приближение в НП и его свойства
Пусть
— нормированное пространство, к примеру, . Пусть — линейное множество в , например, (тригонометрических полиномов степени не больше ).Определение: |
Для любого | величина называется наилучшим приближением точки элементами линейного множества . Если при этом существует такой, что , то этот называется элементом наилучшего приближения точки .
Заметим: гарантий, что
единственный и что он вообще существует, нет.Утверждение: |
Наилучшее приближение является полунормой, то есть выполняются однородность и неравенство треугольника. |
11 Существование элемента наилучшего приближения
Теорема: |
Пусть — нормированное пространство, , тогда существует элемент наилучшего приближения . |
12 Обобщенная теорема Вейерштрасса
TODO: пилим
13 Лемма Римана-Лебега о коэффициентах Фурье функции из
Лемма (Риман-Лебег): |
Пусть , тогда при , . |
14 Теорема Дини
, , , где . Тогда
15 Следствие о четырех пределах
Утверждение (следствие 1 (о четырёх пределах)): |
Пусть в точке существует (левый и правый пределы) и , . Тогда в этой точке ряд Фурье сходится, его сумма равна |
16 Полная вариация функции и ее аддитивность
Определение: |
Вариацией функции Полной вариацией называется | по разбиению называется .
Теорема (аддитивность вариации): |
Пусть и , тогда . |
17 О разложении функции ограниченной вариации в разность возрастающих функций
Теорема: |
— функция ограниченной вариации ( ) тогда и только тогда, когда ее можно представить в виде разности монотонно неубывающих функций ( ). |
18 У словие существования интеграла Стилтьесса
<wikitex>Пусть дан отрезок $[a, b]$, на котором определены функции $f$ и весовая функция $g$, причем $g$ — не убывает. Пусть на нем есть разбиение $\tau : a=x_0 < \dots < x_n=b$ и точки $\xi_i \in [x_i; x_{i+1}]$. Составим интегральную сумму $\sigma(f, g, \tau) = \sum\limits_{k=0}^{n-1} f(\xi_k) \Delta g_k $, где $\Delta g_k = g(x_{k+1}) - g(x_k) $ (заметим, что т.к. $g$ не убывает, $\Delta g_k \ge 0$).
Определение: |
Интегралом Римана-Стилтьеса называется $\int\limits_a^b f dg = \lim\limits_{\operatorname{rang} \tau \to 0} \sigma (f, g, \tau) $, где $\operatorname{rang} \tau = \max(\Delta x_0, \dots \Delta x_{n-1})$. Класс функций, у которых существует интеграл Римана-Стилтьеса обозначанется как $\mathcal{R}(g)$. |
Далее аналогично интегралу Римана введем $\omega(f, g, \tau) = \sum\limits_{k=0}^{n-1} (M_k - m_k) \Delta g_k$, где $m_k = \inf\limits_{[x_k \dots x_{k+1}]} f, M_k = \sup\limits_{[x_k \dots x_{k+1}]} f$.
</wikitex>
Теорема (Критерий существования интеграла Римана-Стилтьеса): |
. |
19 Интегрируемость по Стилтьессу непрерывной функции
<wikitex>
Теорема (о существовании интеграла Римана-Стилтьеса): |
Пусть $f$ непрерывна на $[a, b]$, $g \in V(a, b)$. Тогда интеграл Римана-Стилтьеса $ \int\limits_a^b f dg $ существует. |
</wikitex>
20 Аддитивность интеграла Стилтьесса
TODO: пилим
21 Сведение интеграла Стилтьесса к интегралу Римана
TODO: пилим
22 Формула интегрирования по частям для интеграла Стилтьесса
TODO: пилим
23 Оценка коэффициентов Фурье функции ограниченной вариации
TODO: пилим
24 Теорема Жордана о сходимости ряда Фурье функции ограниченной вариации
TODO: пилим
25 Условие равномерной сходимости ряда Фурье
TODO: пилим
26 Ряды Фурье в : экстремальное свойство сумм Фурье, неравенство Бесселя
TODO: пилим
27 Замкнутые и полные о.н.с.
TODO: пилим
28 Равенство Парсеваля
TODO: пилим
29 Теорема Лузина-Данжуа
TODO: пилим
30 Условие абсолютной сходимости ряда Фурье функции из
TODO: пилим
31 Принцип локализации для рядов Фурье
Теорема (Риман): |
Пусть , , .
Пусть также в -окрестности точки выполняется , тогда |
32 Почленное интегрирование ряда Фурье
TODO: пилим
33 Модуль непрерывности и его свойства
TODO: пилим
34 Теорема о выпуклой мажоранте модуля непрерывности
TODO: пилим
35 Модуль непрерывности в пространстве
TODO: пилим
36 Ядро Джексона
TODO: пилим
37 Теорема Джексона
TODO: пилим
38 Следствия для C^r
TODO: пилим
39 Неравенство Бернштейна для тригонометрических полиномов
TODO: пилим
40 Обратная теорема Бернштейна теории приближений
TODO: пилим
41 Явление Гиббса
TODO: пилим
42 Константа Лебега ядра Дирихле
называется константой Лебега. .
43 Оценка отклонения сумм Фурье через константу Лебега
TODO: пилим
44 Частный интеграл Фурье
TODO: пилим
45 Признак Дини сходимости интеграла Фурье
TODO: пилим