Расчёт вероятности поглощения в состоянии
Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя . Составим матрицу G, элементы которой равны вероятности того, что, выйдя из i, попадём в поглощающее состояние j.
| Теорема: |
| Доказательство: |
|
Пусть этот переход будет осуществлён за r шагов: i → → → ... → → j, где все являются несущественными. Тогда рассмотрим сумму , где Q - матрица переходов между несущественными состояниями, R - из несущественного в существенное. Матрица G определяется их суммированием по всем длинам пути из i в j: , т.к. , а фундаментальная матрица марковской цепи |
Псевдокод
- количество состояний Марковской цепи, - количество переходов. Состояния пронумерованы от 0 до .
Пусть входные данные хранятся в массиве где -ая строка характеризует -ый переход таким образом:
- вероятность перехода из состояния в состояние .
Создадим массив типа Boolean, где -ое обозначает что -ое состояние является поглощающим. Если состояние поглощающее то с вероятностью 1 оно переходит само в себя. Найдем такие состояния. Также посчитаем количество поглощающих состояний _.
for i=0 to n-1
if (input[i][0] == input[i][1] && input[i][2] == 1)
absorbing[input[i][0]] = true;
abs_num++;
Литература
- Википедия - Цепи Маркова
- Кемени Дж., Снелл Дж. "Конечные цепи Маркова".