Эйлеровость графов
Версия от 03:59, 4 октября 2010; Alexey.tsyplenkov (обсуждение | вклад) (→Эйлеров путь, Эйлеров цикл)
Эйлеров путь
Путь в графе
называется Эйлеровым, если содержит все ребра , причем каждое - только один раз.
Эйлеров цикл
Цикл в графе
называется Эйлеровым, если содержит все ребра , причем каждое - только один раз.
Эквивалентно: Эйлеровым циклом является Эйлеров путь, являющийся циклом.
Эйлеров граф
Определение
Граф называется Эйлеровым, если содержит Эйлеров цикл.
Граф, содержащий Эйлеров путь, не являющийся циклом, называют полуэйлеровым.
Критерий Эйелеровости
Неориентированный граф
Теорема
Неориентированный связный граф является Эйлеровым тогда и только тогда, когда не содержит вершин нечетной степени.