Теоретический минимум по функциональному анализу за 6 семестр
Содержание
- 1 1 [math] A^* [/math] и его ограниченность
- 2 2 Ортогональные дополнения [math] E [/math] и [math] E^* [/math]
- 3 3 Ортогональное дополнение R(A)
- 4 4 Ортогональное дополнение [math] R(A^*) [/math]
- 5 5 Арифметика компактных операторов
- 6 6 О компактности [math] A^* [/math], сепарабельность [math] R(A) [/math]
- 7 7 Базис Шаудера, лемма о координатном пространстве
- 8 8 Почти конечномерность компактного оператора
- 9 9 Размерность Ker(I-A) компактного A
- 10 10 Замкнутость R(I-A) компактного A
- 11 11 Лемма о Ker(I-A)^n компактного A
- 12 12 Условие справедливости равенства R(I-A)=E
- 13 13 Альтернатива Фредгольма-Шаудера
- 14 14 Спектр компактного оператора
- 15 15 Определение самосопряженного оператора, неравенство для (a+ib)(I-A)
- 16 16 Вещественность спектра ограниченного самосопряженного оператора
- 17 17 Критерий включения в резольвентное множество ограниченного самосопряженного оператора
- 18 18 Критерий включения в спектр ограниченного самосопряженного оператора
- 19 19 Локализация спектра с.с. оператора посредством чисел m- и m+
- 20 20 Спектральный радиус ограниченного самосопряженного оператора и его норма
- 21 21 Теорема Гильберта-Шмидта
- 22 22 Разложение резольвенты компактного самосопряженного оператора.
- 23 23 Локальная сходимость метода простой итерации
- 24 24 Локальная сходимость метода Ньютона для операторных уравнений
- 25 25 Проекторы Шаудера
- 26 26 Теорема Шаудера о неподвижной точке
1 и его ограниченность
Пусть оператор
действует из в , и функционал принадлежит .Рассмотрим
.Получили новый функционал
, принадлежащий . .. — сопряженный оператор к .
Теорема: |
Если — линейный ограниченный оператор, то . |
2 Ортогональные дополнения и
Определение: |
Пусть Аналогично, если — ортогональное дополнение . , то . | — НП, .
Утверждение: |
. |
3 Ортогональное дополнение R(A)
Теорема: |
. |
4 Ортогональное дополнение
Теорема: |
. |
5 Арифметика компактных операторов
Определение: |
Множество называется относительно компактным (предкомпактным), если его замыкание компактно |
Определение: |
Линейный ограниченный оператор | называется компактным, если переводит любое ограниченное подмножество в относительно компактное множество из .
Утверждение: |
|
6 О компактности , сепарабельность
Утверждение: |
Пусть — компактный, тогда — сепарабельно (то есть, в существует счетное всюду плотное подмножество). |
Утверждение: |
- компактен - компактен |
7 Базис Шаудера, лемма о координатном пространстве
Определение: |
Базисом Шаудера в банаховом пространстве | называется множество его элементов такое, что у любого в существует единственное разложение .
Определим — это линейное пространство.
Так как ряд сходится,
можно превратить в НП, определив норму как .Утверждение: |
Пространство относительно этой нормы — банахово. |
8 Почти конечномерность компактного оператора
Теорема (почти конечномерность компактного оператора): |
Если — банахово пространство с базисом Шаудера, — компактный, то для всех существует разложение оператора в сумму двух компактных операторов: такое, что:
|
9 Размерность Ker(I-A) компактного A
Утверждение: |
— компактный оператор. Тогда |
10 Замкнутость R(I-A) компактного A
Теорема: |
Пусть , компактен, тогда замкнуто. |
11 Лемма о Ker(I-A)^n компактного A
Утверждение: |
Пусть , — компактный оператор.
Тогда . |
12 Условие справедливости равенства R(I-A)=E
Утверждение: |
Пусть — компактный оператор на банаховом , .
Тогда . |
13 Альтернатива Фредгольма-Шаудера
Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
14 Спектр компактного оператора
Рассмотрим
.- , тогда оператор необратим, и — собственное число, то есть .
- , тогда по альтернативе, оператор непрерывно обратим, то есть .
Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:
Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
15 Определение самосопряженного оператора, неравенство для (a+ib)(I-A)
Определение: |
Оператор | называется самосопряжённым ( ), если
,
16 Вещественность спектра ограниченного самосопряженного оператора
Утверждение: |
Собственные числа самосопряжённого оператора вещественны |
17 Критерий включения в резольвентное множество ограниченного самосопряженного оператора
Теорема: |
Пусть — самосопряжённый оператор. Тогда
|
18 Критерий включения в спектр ограниченного самосопряженного оператора
Теорема: |
Пусть — самосопряжённый оператор. Тогда
|
19 Локализация спектра с.с. оператора посредством чисел m- и m+
Определение: |
Теорема: |
1.
2. |
20 Спектральный радиус ограниченного самосопряженного оператора и его норма
Утверждение: |
Если — самосопряжённый оператор, то |
21 Теорема Гильберта-Шмидта
Теорема (Гильберт, Шмидт): |
Если — самосопряжённый оператор в гильбертовом пространстве , а — его (оператора) собственные подпространства, то |
22 Разложение резольвенты компактного самосопряженного оператора.
23 Локальная сходимость метода простой итерации
Теорема (Локальная теорема о простой итерации): |
Пусть известно, что существует и .
Тогда существует такой шар , что если , то:
|
24 Локальная сходимость метода Ньютона для операторных уравнений
Утверждение: |
25 Проекторы Шаудера
— конечная -сеть.
Построим следующую функцию:
Определение: |
— проектор Шаудера. |
26 Теорема Шаудера о неподвижной точке
Теорема (Шаудер, о неподвижной точке): |
Пусть — ограниченное замкнутое выпуклое подмножество B-пространства и вполне непрерывно отображает в себя.
Тогда . |