Материал из Викиконспекты
Теорема: |
Пусть [math]p_a(\lambda) = \displaystyle \prod_{i=1}^k p_i(\lambda)[/math] (взаимнопростые делители)
Пусть [math]p_i^{'} = {p_a \over p_i}[/math]; [math]q_i[/math] - также понятно, что [math]\displaystyle \sum\limits_{i=1}^k p_i^{'}(\lambda)\cdot q_i(\lambda) = \mathit{1}[/math]
Тогда 1) [math]X = \dotplus \sum\limits_{i=1}^k p_i^{'}(\mathcal{A})\cdot q_i(\mathcal{A})[/math];
[math]I = \displaystyle \sum\limits_{i=1}^k p_i^{'}(\mathcal{A})\cdot q_i(\mathcal{A})[/math], где [math]x = \sum\limits_{i=1}^k p_i^{'} (\mathcal{A})\cdot q_i(\mathcal{A})x=\sum\limits_{i=1}^k x_i[/math] так, что [math]x_i = p_i^{'}(\mathcal{A})\cdot q_i(\mathcal{A}) \in \ker p_i(\mathcal{A})[/math]
[math]p_i^{'}(\mathcal{A})\cdot q_i(\mathcal{A}) - проектор на ядро \ker p_i(\mathcal{A})[/math]
линейная оболочка остальных ядер = л.о. [math]\{\ker p_1(\mathcal{A}),...,\ker p_k(\mathcal{A})\}[/math] |