Материал из Викиконспекты
Теорема умножения определителей
Теорема: |
Пусть [math]\mathcal{A}[/math], [math]\mathcal{B} \colon X \to X[/math] (автоморфизм). Тогда [math]\det (\mathcal{A} \cdot \mathcal{B}) = \det \mathcal{A} \cdot \det \mathcal{B}[/math] |
Доказательство: |
[math]\triangleright[/math] |
[math]\det (\mathcal{A} \cdot \mathcal{B}) {e_1} \land {e_2} \land... \land{e_n} = [/math] [math]
(\mathcal{A} \cdot \mathcal{B})^{\wedge_n}{e_1} \land {e_2} \land... \land{e_n} = ^{(*)}[/math] [math]
(\mathcal{A} \cdot \mathcal{B}) {e_1} \land (\mathcal{A} \cdot \mathcal{B}) {e_2} \land ... \land (\mathcal{A} \cdot \mathcal{B}) {e_n} = ^{(def\mathcal{A} \cdot \mathcal{B})}[/math] [math]
\mathcal{A} (\mathcal{B} {e_1}) \land \mathcal{A} (\mathcal{B} {e_2}) \land ... \land \mathcal{A} (\mathcal{B} {e_n}) = ^{(**)}[/math] [math]
\mathcal{A}^{\wedge_n}(\mathcal{B} {e_1} \land \mathcal{B} {e_2} \land ... \land \mathcal{B} {e_n})= ^{(***)}[/math] [math]
\det \mathcal{A} \cdot (\mathcal{B} {e_1} \land \mathcal{B} {e_2} \land ... \land \mathcal{B} {e_n}) = ^{(***)}[/math] [math]
\det \mathcal{A} \cdot \mathcal{B}^{\wedge_n}({e_1} \land {e_2} \land ... \land {e_n}) = [/math] [math]
\det \mathcal{A} \cdot \det \mathcal{B} \cdot {e_1} \land {e_2} \land ... \land {e_n} [/math]
т.е. [math] \det (\mathcal{A} \cdot \mathcal{B}) {e_1} \land {e_2} \land... \land{e_n} = [/math] [math]
\det \mathcal{A} \cdot \det \mathcal{B} \cdot {e_1} \land {e_2} \land ... \land {e_n}
[/math] |
[math]\triangleleft[/math] |