Теоретический минимум по математическому анализу за 2 семестр
Содержание
- 1 №1. Суммирование расходящихся рядов методом средних арифметических
- 2 №2. Суммирование расходящихся рядов методом Абеля
- 3 №3. Теорема Фробениуса
- 4 №4. Тауберова теорема Харди
- 5 №5. Равномерная сходимость функционального ряда. Критерий Коши
- 6 №6. Признак Вейерштрасса
- 7 №7. Признак типа Абеля-Дирихле
- 8 №8. Предельный переход под знаком функционального ряда
- 9 №9. Условия почленного интегрирования функционального ряда
- 10 №10. Условия почленного дифференцирования функционального ряда
- 11 №11. Лемма Абеля
- 12 №12. Теорема о радиусе сходимости
- 13 №13. Вычисление радиуса сходимости
- 14 №14. Дифференцирование и интегрирование степенных рядов
- 15 №15. Степенной ряд, как ряд Тейлора своей суммы
- 16 №16. Достаточное условие разложимости функции в ряд Тейлора
- 17 №17. Разложение в степенной ряд показательной и логарифмической функций
- 18 №18. Разложение в степенной ряд тригонометрических функций
- 19 №19. Биномиальный ряд Ньютона
- 20 №20. Формула Стирлинга
- 21 №21. Нормированное пространство: арифметика предела
- 22 №22. Ряды в банаховых пространствах
- 23 №23. Унитарные пространства, неравенство Шварца
- 24 №24. Гильбертовы пространства, экстремальное свойство ортонормированных систем
- 25 №25. Ортогональные ряды в гильбертовых пространствах.
- 26 №26. Принцип сжатия Банаха
- 27 №27. Линейные операторы в НП: непрерывность и ограниченность
- 28 №28. Норма линейного оператора
- 29 №29. Линейные функционалы в унитарном пространстве, разделение точек
- 30 №30. Пространство R^n : покоординатная сходимость
- 31 №31. Полнота R^n
- 32 №32. Критерий компактности в R^n
- 33 №33. Непрерывные отображения в R^n: координатные функции, непрерывность линейных операторов
- 34 №34. Дифференциал отображения и частные производные, дифференцируемость суперпозиции
- 35 №35. Формула конечных приращений для функции многих переменных
- 36 №36. Неравенство Лагранжа
- 37 №37. Достаточное условие дифференцируемости функции многих переменных
- 38 №38. Дифференциалы высших порядков, теорема о смешанных производных
- 39 №39. Формула Тейлора для функции многих переменных
- 40 №40. Безусловный экстремум: необходимое и достаточное условия
- 41 №41. Локальная теорема о неявном отображении
- 42 №42. Исследование функции многих переменных на условный экстремум
- 43 №43. Определенный интеграл, зависящий от параметра: непрерывность, интегрирование и дифференцирование
- 44 №44. Равномерная сходимость несобственного интеграла, зависящего от параметра, признак Вейерштрасса
- 45 №45. Несобственный интеграл, зависящий от параметра: непрерывность
- 46 №46. Несобственный интеграл, зависящий от параметра: интегрирование
- 47 №47. Несобственный интеграл, зависящий от параметра: дифференцирование
- 48 №48. Понятие о Гамма и Бета функциях Эйлера
- 49 №49. Интеграл Римана по прямоугольнику: критерий существования
- 50 №50. Аддитивность интеграла по прямоугольнику
- 51 №51. Формула повторного интегрирования для прямоугольника
- 52 №52. Критерий квадрируемости фигуры по Жордану
- 53 №53. Условие существования интеграла по квадрируемому компакту
- 54 №54. Формула повторного интегрирования в общем случае
- 55 №55. Вычисление площади фигуры в криволинейных координатах
- 56 №56. Замена переменных интегрирования в двойном интеграле
- 57 №57. Обзор формул для многократных интегралов
№1. Суммирование расходящихся рядов методом средних арифметических
| Определение: |
| Ряд имеет сумму по методу средних арифметических (обозначают аббревиатурой с.а.), если . |
№2. Суммирование расходящихся рядов методом Абеля
| Определение: |
| Пусть дан ряд и (в классическом смысле). Тогда этот ряд имеет сумму по методу Абеля, если . |
№3. Теорема Фробениуса
| Теорема (Фробениус): |
(с.а) (А). |
№4. Тауберова теорема Харди
| Теорема (Харди): |
(с.а.)
Тогда, если существует такое , что , то . |
№5. Равномерная сходимость функционального ряда. Критерий Коши
| Определение: |
| равномерно сходится к , если
Пишут, что . |
| Определение: |
| Пусть на задан функциональный ряд . Тогда он равномерно сходится к
, если |
| Теорема (Критерий Коши равномерной сходимости): |
Ряд равномерно сходится на |
№6. Признак Вейерштрасса
| Теорема (Вейерштрасс): |
, , , — сходится.
Тогда равномерно сходится на . |
№7. Признак типа Абеля-Дирихле
| Теорема: |
Пусть:
|
№8. Предельный переход под знаком функционального ряда
| Теорема: |
Пусть на множестве заданы функции , — предельная точка этого множества и
. Тогда если - равномерно сходится на , то выполняется равенство : |
№9. Условия почленного интегрирования функционального ряда
| Теорема: |
Пусть интегрируема и равномерно сходится к на . Тогда тоже интегрируема, и
. |
| Утверждение: |
Пусть функциональный ряд состоит из и равномерно сходится на этом отрезке.
Тогда сумма ряда будет интегрируемой функцией, и будет выполняться: |
№10. Условия почленного дифференцирования функционального ряда
| Теорема: |
Пусть на задан функциональный ряд , - сходится.
Пусть также - непрерывна на и - равномерно сходится на , тогда на выполняется : . |
№11. Лемма Абеля
| Лемма (Абель): |
Пусть для некоторого — сходится.
Тогда ряд сходится. |
№12. Теорема о радиусе сходимости
| Определение: |
| — сходится . Заметим, что возможны случаи и . |
| Теорема: |
Пусть есть ряд и — его радиус сходимости. Тогда
1) ряд абсолютно сходится. 2) ряд сходится абсолютно и равномерно. 3) ряд расходится. 4) — неопределённость. |
№13. Вычисление радиуса сходимости
| Теорема: |
Пусть есть , — его радиус сходимости. Тогда:
1) Если , то . 2) Если , то Замечание: на самом деле, есть формула Коши-Адамара, применимая в любом случае: . |
№14. Дифференцирование и интегрирование степенных рядов
Вопрос: "Каковы будут радиусы сходимости почленно проинтегрированных или продифференцированных рядов?"
Ответ: "Почленное интегрирование или дифференцирование не меняет радиуса сходимости ряда".
| Утверждение: |
Промежуток сходимости степенного ряда совпадает с промежутком сходимости продифференцированного степенного ряда |
№15. Степенной ряд, как ряд Тейлора своей суммы
<wikitex> Пусть $ f(x) = \sum\limits_{n = 0}^{\infty} a_n (x - x_0)^n, \qquad R > 0 \qquad (x_0 - R; x_0 + R) $.
| Определение: |
| $ \sum\limits_{n = 0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n $ - ряд Тейлора функции по степеням $ (x - x_0) $. |
Сопоставим ряд с формулой Тейлора функции, которую можно писать для любого $ n $.
$ f(x) = \sum\limits_{k = 0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(x) \Rightarrow $ ряд получается из формулы при $ n \to \infty $. Если $ r_n(x) \rightarrow 0 $ при $ n \rightarrow \infty $, то можно перейти к пределу.
$ f(x) = \sum\limits_{k = 0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k $, что является разложением функции в степенной ряд в точке $ x $.
Если при всех x из некоторой окрестности точки $ x_0 $ функция разлагается в степенной ряд, то это будет обязательно ряд Тейлора.
Если разложение возможно, то единственно. Изучается с помощью поведения остатка $ r_n(x) $. </wikitex>
№16. Достаточное условие разложимости функции в ряд Тейлора
Для того, чтобы функция была разложима в ряд Тейлора, достаточно чтобы
№17. Разложение в степенной ряд показательной и логарифмической функций
<wikitex> $e^x \stackrel{def}{=} \sum\limits_{k = 0}^{\infty} \frac{x^k}{k!} $
$ \ln(1 + x) = \sum\limits_{k = 1}^n (-1)^{k - 1} \frac{x^k}k + r_n(x) $, причем $ r_n(x) = \frac{\ln^{(n + 1)} (1 + \theta_n x)}{(n + 1)!} x^{n + 1}, \theta_n \in (0; 1) $ </wikitex>
№18. Разложение в степенной ряд тригонометрических функций
<wikitex> $\sin(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n + 1}}{(2n + 1)!}$
$\cos(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n}}{(2n)!}$ </wikitex>
№19. Биномиальный ряд Ньютона
<wikitex> $ (1 + x)^{\alpha} = \sum\limits_{k = 1}^{\infty} \left[ \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} x^k \right] + 1, \alpha \in \mathbb{R} $
$ r_n(x) = \frac{a (a - 1) \dots (a - n + 1) (a - n) (1 + \theta x)^{a - n - 1}}{n!} (1 - \theta)^n x^{n + 1} $ (в форме Коши) </wikitex>
№20. Формула Стирлинга
<wikitex> $ n! = \sqrt{2 \pi n} {\left ( \frac ne \right )}^n e^{\frac{\theta_n}{12n}} $ </wikitex>
№21. Нормированное пространство: арифметика предела
| Утверждение: |
Пусть , — последовательности точек нормированного пространства , а — вещественная последовательность. Известно, что , , .
Тогда: |
№22. Ряды в банаховых пространствах
| Определение: |
| Нормированное пространство называется B-пространством, если для любой последовательности элементов , для которых из при вытекает существование предела последовательности. |
№23. Унитарные пространства, неравенство Шварца
| Определение: |
| Линейное множество со скалярным произведением называется унитарным пространством. |
| Утверждение: |
№24. Гильбертовы пространства, экстремальное свойство ортонормированных систем
Среди нормированных пространств выделяется подкласс так называемых гильбертовых пространств.
Пусть — линейное пространство. Величина называется скалярным произведением точек множества , если она удовлетворяет следующим трём аксиомам:
- ,
Базируясь на этом неравенстве, определим норму .
Доказанное неравенство треугольника превращает в нормированное пространство. Если оно является B-пространством, то его называют гильбертовым пространством.
| Теорема (Бессель): |
Пусть - ОНС в и , тогда
|
Экстремальное свойства ряда Фурье заключается в следующем: располагается ближе всего к , если — ряд Фурье .
№25. Ортогональные ряды в гильбертовых пространствах.
| Определение: |
| Ряд является ортогональным, если . |
В частности, так как - ОНС в (гильбертово), то — ортогональный ряд.
| Теорема: |
- сходящийся ортогональный ряд .
При этом, если x - сумма ряда, то выполняется теорема Пифагора: |
№26. Принцип сжатия Банаха
| Определение: |
| Пусть — B-пространство. Пусть — замкнутый шар в . — сжатие на шаре , если . |
| Теорема (Банах): |
У любого сжимающего отображения существует ровно одна неподвижная точка . |
№27. Линейные операторы в НП: непрерывность и ограниченность
| Определение: |
| Пусть , — нормированные пространства, . называется линейным оператором, если |
| Определение: |
| Л.о. называется ограниченным, если |
| Определение: |
| Л.о. непрерывен в X, если |
| Теорема: |
Линейный оператор непрерывен тогда и только тогда, когда он ограничен. |
№28. Норма линейного оператора
| Определение: |
| Нормой ограниченного оператора является . |
№29. Линейные функционалы в унитарном пространстве, разделение точек
| Определение: |
| Линейный функционал - линейный оператор вида , где - гильбертово пространство. |
| Теорема: |
Для любого существует ограниченный линейный функционал , обладающий такими свойствами:
|
| Утверждение (Разделение точек): |
линейный функционал |
|
Рассмотрим . . По линейности, . Значит, . |
№30. Пространство R^n : покоординатная сходимость
| Утверждение (покоординатная сходимость в ): |
Пусть дана последовательность . Тогда в тогда и только тогда, когда для любого последовательность |
№31. Полнота R^n
| Теорема: |
Пространство с евклидовой нормой является B-пространством. |
| Доказательство: |
|
Надо установить, что из сходимости в себе следует существование предела по норме . Если , то для любого выполняется . По критерию Коши для числовых последовательностей из этого следует, что каждая из последовательностей имеет предел, то есть, последовательность точек сходится покоординатно. Но по доказанному ранее утверждению из покоординатной сходимости следует сходимость по норме, что и требовалось доказать. |
№32. Критерий компактности в R^n
| Теорема (критерий компактности в ): |
Множество в компактно тогда и только тогда, когда оно замкнуто и ограничено. |
№33. Непрерывные отображения в R^n: координатные функции, непрерывность линейных операторов
| Определение: |
| Л.о. непрерывен в X, если |
Также, непрерывность л.о. совпадает с его непрерывностью в нуле.
В сходимость покоординатная. (по неравенству Коши для сумм), таким образом, из неизбежно следует
| Утверждение: |
|
— здесь отчётливо видно правило умножения матриц. Отсюда понятно, почему часто устанавливают связь между линейными операторами и матрицами: , где и пробегают от до и соответственно, а — результат действия л.о. на точку можно представить в виде произведения матрицы и столбца . В сходимость покоординатная. (по неравенству Коши для сумм), таким образом, из неизбежно следует Итак, линейный оператор, действующий из одного конечномерного пространства в другое, всегда непрерывен. |
№34. Дифференциал отображения и частные производные, дифференцируемость суперпозиции
| Определение: |
| Пусть —шар в . — дифференцируема в точке , если существует зависящий от ограниченный линейный оператор , такой, что если , то:
, причем при Тогда — производная Фреше отображения в точке . |
| Теорема: |
Композиция дифференцируемых отображений дифференцируема. Производная Фреше равна композиции производных Фреше отображений.
Пусть , тогда |
| Определение: |
| Данный предел называется частной производной первого порядка функции по переменной . |
№35. Формула конечных приращений для функции многих переменных
№36. Неравенство Лагранжа
| Теорема (Неравенство Лагранжа): |
Пусть — шар в —дифференцируема в каждой точке шара, тогда: , где |
№37. Достаточное условие дифференцируемости функции многих переменных
| Теорема: |
Пусть ,
, каждая из которых, как функция переменных, непрерывна в . Тогда существует дифференциал этой функции в точке . |
№38. Дифференциалы высших порядков, теорема о смешанных производных
Определим частные производные и дифференциалы высших порядков.
— оператор, дифференцирующий функцию по . Последовательное применение такого рода оператора даёт нам частные производные высших порядков. Пусть . Тогда — частная производная второго порядка функции . Дифференцирование осуществляется по переменной в знаменателе, слева направо.
| Теорема (О смешанных производных): |
Пусть в двумерном шаре у функции существуют смешанные производные второго порядка и каждая из них непрерывна в некоторой точке этого шара. Тогда в : |
№39. Формула Тейлора для функции многих переменных
№40. Безусловный экстремум: необходимое и достаточное условия
| Определение: |
| Пусть задан линейный функционал на . Если при , , то — точка локального максимума. Аналогично определяется точка локального минимума. |
| Теорема (Аналог теоремы Ферма(необходимое условие)): |
Пусть дифференцируема в точке локального экстремума . Тогда |
Достаточное условие:
Если , а как квадратичная форма строго положительно определенная, то — точка локального минимума.
№41. Локальная теорема о неявном отображении
Пусть , тогда рассмотрим .
, . Существуют ли такие , что для любого существует единственный ?
Если это так, то, в силу единственности y, определяем на так, чтобы . — неявное отображение, определяется как
| Теорема (О неявном отображении): |
Пусть для поставлена задача о неявном отображении, с начальными данными . Известно, что в окрестности начальных данных непрерывно зависит от и непрерывно обратима в . Тогда в некоторой окрестности начальных данных неявное отображение существует. |
№42. Исследование функции многих переменных на условный экстремум
. Пусть заданы «уравнения связи» в количестве m:
— условный максимум функции , если для всех и , удовлетворяющих уравнениям связи, выполняется неравенство . Если же — условный минимум.
Метод множителей Лагранжа:
Далее составляем систему соотношений так, будто для мы стали искать безусловный экстремум:
Если всё это раскрыть, получим то, о чём мы говорили выше, но эта запись более компактна.
№43. Определенный интеграл, зависящий от параметра: непрерывность, интегрирование и дифференцирование
<wikitex> Рассматриваем $ z = f(x, y) $, заданную на прямоугольнике $ a \le x \le b; \quad c \le y \le d $.
$ f $ непрерывна.
$ F(y) = \int\limits_a^b f(x, y) dx $ - интеграл, зависящий от параметра.
- $ F(y) $ - непрерывна на $ [c; d] $.
- Если существует непрерывная $ \frac{\partial f}{\partial y} $, то cуществует $ F'(y) = \int\limits_a^b \frac{\partial f}{\partial y} (x, y) dx $ - формула Лейбница.
- $ \int\limits_c^d F(y) dy = \int\limits_a^b dx \int\limits_c^d f(x, y) dy $ - формула читается справа налево, является повторным интегралом и по сути означает смену местами интегралов по двум переменным.
</wikitex>
№44. Равномерная сходимость несобственного интеграла, зависящего от параметра, признак Вейерштрасса
<wikitex> Если выполняется следующее условие: $ f $ непрерывна, $ \forall \varepsilon > 0 : \exists A_0 : \forall A > A_0 , \forall y_0 \in [c; d] \Rightarrow | \int\limits_A^{\infty} f(x, y_0) dx | < \varepsilon $, то $ F(y) = \int\limits_a^{\infty} f(x, y) dx $ равномерно сходится на $ [c; d] $.
| Теорема (Вейерштрасс, Признак равномерной сходимости несобственных интегралов): |
Пусть $ |
</wikitex>
№45. Несобственный интеграл, зависящий от параметра: непрерывность
<wikitex> Считаем, что f непрерывна в полосе, а интеграл равномерно сходится на [c; d]
$ F(y) = \int\limits_a^{\infty} f(x, y) dx \stackrel{?}{\Rightarrow} \Delta F(y) \xrightarrow[\Delta y \to 0]{} 0 $ </wikitex>
№46. Несобственный интеграл, зависящий от параметра: интегрирование
<wikitex> $ \int\limits_c^d dy \int\limits_a^{\infty} f(x, y) dx = \int\limits_a^{\infty} dx \int\limits_c^d f(x,y) dy $ </wikitex>
№47. Несобственный интеграл, зависящий от параметра: дифференцирование
<wikitex> Предположим непрерывность $ \frac{\partial f}{\partial y} $.
$ \int\limits_a^{\infty} \frac{\partial f}{\partial y} (x, y) dx $ - равномерно сходится.
$ \int\limits_a^{\infty} \frac{\partial f}{\partial y} (x, y) dx = \left( \int\limits_a^{\infty} f(x, y) dx \right)' $ </wikitex>
№48. Понятие о Гамма и Бета функциях Эйлера
<wikitex> $ B (a, b) = \int\limits_0^1 x^{a - 1} (1 - x)^{b - 1} dx $
$ \Gamma (a) = \int\limits_0^{\infty} x^{a - 1} e^{-x} dx $
$ B(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)} $
В обоих случаях: интегралы, зависящие от параметра.
Легко понять, что $ B (a, b) $ Сходится при $ a, b > 0 $; $ \Gamma(a) $ сходится при $ a > 0 $. </wikitex>
№49. Интеграл Римана по прямоугольнику: критерий существования
| Определение: |
| Двойной интеграл |
,
Существование интеграла равносильно совпедению пределов нижней и верхней интегральных сумм и
№50. Аддитивность интеграла по прямоугольнику
Если разбито на конечное число прямоугольников , и они не имеют общих внутренних точек, то:
№51. Формула повторного интегрирования для прямоугольника
А ВАС ЭТО НЕ СПРОСЯТ
№52. Критерий квадрируемости фигуры по Жордану
| Определение: |
| квадрируема по Жордану, если существует . Значение этого интеграла называется 'площадью фигуры'. |
(Признак!) Пусть — спрямляемая замкнутая жорданова дуга. Тогда её внутренняя часть — квадрируемая фигура.
Вообще в Фихтенгольце есть критерий:
Для того чтобы фигура была квадрируема, необходимо и достаточно, чтобы ее контур имел площадь 0. Но он нам этого не давал, возможно, перед экзаменом стоит ему об этом сказать.
№53. Условие существования интеграла по квадрируемому компакту
| Теорема: |
Пусть — квадрируемый компакт на плоскости, непрерывна на . Тогда существует . |
№54. Формула повторного интегрирования в общем случае
А ВАС ЭТО НЕ СПРОСЯТ
№55. Вычисление площади фигуры в криволинейных координатах
№56. Замена переменных интегрирования в двойном интеграле
<wikitex> $P(u, v) = \begin{pmatrix} x_u' & y_u' \\ x_v' & y_v' \\ \end{pmatrix} $
$J(u, v) = det(P(u, v))$;
| Теорема (Замена переменных интегрирования в двойном интеграле): |
Пусть дан закон преобразования переменных,
$\begin{cases} x & = x(u, v)\\ y & = y(u, v)\\ \end{cases}$; $E$ - квадрируемая фигура в $Oxy$, якобиан преобразования определен так же, как и ранее. Пусть $f: E \rightarrow \mathbb R$. Тогда выполняется $ |