Примеры неразрешимых задач: задача о выводе в полусистеме Туэ
Версия от 00:35, 14 января 2014; 188.227.78.144 (обсуждение)
Определение: |
Полусистема Туэ (semi-Thue system) - это формальная система, определяемая алфавитом | и конечным множеством подстановок вида , где - слова из .
Подстановка интерпретируется как правило вывода следующим образом:
по , если слово получается путем подстановки какого-нибудь вместо какого-то вхождения в .
Вывод
из - цепочка , где каждое получается из некоторой подстановкой.
Определение: |
Проблема останова (halting problem) - это задача, в которой требуется по заданной программе проверить завершиться ли она на определенных входных данных. |
Теорема: |
Проблема останова неразрешима. |
Доказательство: |
Доказательство теоремы приведено в примере использования теоремы о рекурсии. |
Теорема: |
В заданной полусистеме Туэ задача вывода из слова слово (word problem for semi-Thue systems) неразрешима. |
Доказательство: |
Сведем (прим. m-сводимость) неразрешимую задачу проблемы останова к нашей. Для этого построим по структуре данной из проблемы останова МТ (прим. Машина Тьюринга) полусистему Туэ. Для этого будем описывать текущее состояние МТ с помощью строки , где — текущее состояние автомата, — строка, записанная на ленте. Пусть — последний символ строки , а — строки . При этом головка указывает на символ . Тогда текущий шаг МТ можно описать с помощью следующих преобразований строк: |
Источники
Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера