Алгоритм Shift-Or
В 1990ые годы Рикардо Беза-Йетс (англ. Ricardo Baeza-Yates) и Гастон Гоннет (англ. Gaston Gonnet) изобрели простой битовый метод, эффективно решающий задачу точного поиска малых образцов (длиной в типичное английское слово). Они назвали его методом , хотя, исходя из самого алгоритма, естественней назвать его . Также алгоритм известен как алгоритм и алгоритм Беза-Йетса-Гоннета.
Содержание
Алгоритм
Пусть — шаблон длины , — текст длины .
Нам потребуется двоичный массив размером , в котором индекс пробегает значения от до , а индекс — от до . { , если первые символов точно совпадают с символами , кончаясь на позиции ; — иначе}.
То есть тогда и только тогда, когда . Например, пусть , . Тогда , остальные . Получаем, что элементы, равные , в строчке показывают все места в , где заканчиватся копии , а столбец показывает все префиксы , которые заканчиваются в позиции строки . тогда, когда вхождение заканчивается в позиции строки . То есть вычисление последней строки решает задачу точного совпадения.
Построение массива . Создадим для каждого символа алфавита двоичный вектор длины . равно в тех позициях , где стоит символ . Например, ,
Определим как вектор, полученный сдвигом вектора для столбца вниз на одну позицию и записью в первой позиции. Старое значение в позиции теряется. То есть состоит из , к которой приписаны первые битов столбца .
Из определения, нулевой столбец состоит из нулей. Элементы любого другого столбца получаются из столбца и вектора для символа . А именно, вектор для столбца получается операцией побитового логического умножения вектора и вектора . Например, …
Псевдокод
   algorithm bitap_search(text : string, pattern : string) returns string
       m := length(pattern)
       if m == 0
           return text
       /* Initialize the bit array R. */
       R := new array[m+1] of bit, initially all 0
       R[0] = 1
       for i = 0; i < length(text); i += 1:
           /* Update the bit array. */
           for k = m; k >= 1; k -= 1:
               R[k] = R[k-1] & (text[i] == pattern[k-1])
           if R[m]:
               return (text+i - m) + 1
       return nil
Корректность
Докажем, что метод правильно вычисляет элементы массива . Заметим, что для любого элемент тогда и только тогда, когда совпадает с , а символ совпадает с . Первое условие выполнено, когда элемент массива , а второе — когда -ый бит вектора для символа равен . После сдвига столбца алгоритм логически умножает элемент столбца на элемент вектора . Следовательно, все элементы вычисляются правильно и алгоритм находит все вхождения образца в текст.
Эффективность
Сложность алгоритма составляет , на препроцессинг — построение массива требуется операций и памяти. Если же не превышает длину машинного слова, то сложность получается и соответсвенно.
