Примеры матроидов
Содержание
Разноцветный матроид
| Определение: |
| Пусть — множество элементов, каждый из которых раскрашен в некоторый цвет. Множество , если все элементы множества разного цвета. Тогда называется разноцветным матроидом (англ. multicolored matroid). |
| Утверждение: |
Разноцветный матроид является матроидом. |
|
Докажем аксиомы независимости для . 1. В пустом множестве нет элементов можем считать, что все элементы различных цветов. 2. Если в все элементы разного цвета, то и в это будет выполняться. 3. В каждом из множеств и все элементы разных цветов. Так как , значит в есть хотя бы один элемент такого цвета, которого нет среди элементов множества , таким образом |
Универсальный матроид
| Определение: |
| Универсальным матроидом (англ. uniform matroid) называют объект , где |
| Утверждение: |
Универсальный матроид является матроидом. |
|
Проверим выполнение аксиом независимости: 1)
2)
3) Так как и числа в каждом множестве различны, найдётся такое число , которое не будет принадлежать меньшему по мощности множеству . Рассмотрим . |
Графовый матроид
| Определение: |
| Пусть — неориентированный граф. Тогда , где состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют графовым (графическим) матроидом (англ. graphic matroid). |
| Утверждение: |
Графовый матроид является матроидом. |
|
Проверим выполнение аксиом независимости: 1) Пустое множество является ациклическим, а значит входит в . 2) Очевидно, что любой подграф леса, так же является лесом, а значит входит в вследствие своей ацикличности. 3) В графе как минимум две компоненты связанности, иначе являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью. Допустим в не существует ребра, соединяющего две различные компоненты связанности из , значит любая компонента связанности из целиком вершинно-входит в какую-либо компоненту из . Рассмотрим любую компоненту связанности из , у неё вершин и рёбер. Теперь рассмотрим все компоненты связанности из , вершинно-входящие в , пусть их штук, тогда суммарное количество рёбер из равно , что не превосходит (количество рёбер в ). Просуммируем неравенство по всем компонентам связанности из и получим , что противоречит условию. Значит предположение не верно, и в существует искомое ребро из разных компонент связанности . |
Матричный матроид
| Определение: |
| Пусть — векторное пространство над телом , пусть набор векторов из пространства является носителем . Элементами независимого множества данного матроида являются множества линейно-независимых векторов из набора . Тогда , называется матричным матроидом (англ. vector matroid) |
| Утверждение: |
Матричный матроид является матроидом. |
|
Проверим выполнение аксиом независимости: 1) Множество в котором нет векторов является линейно-независимым. 2) Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым. 3) Так как , то . По условию , то есть . Тогда множество линейно-независимо по определению линейной оболочки. |
Трансверсальный матроид
| Определение: |
| Пусть — двудольный граф. паросочетание , покрывающее . Тогда называют трансверсальным матроидом (англ. transversal matroid). |
| Утверждение: |
Трансверсальный матроид является матроидом. |
|
Проверим выполнение аксиом независимости: 1) Пустое паросочетание удовлетворяет условию. 2) Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания ребра, концами которых являются вершины из множества . Оставшееся множество ребер будет являться паросочетанием, покрывающим . Значит . 3) Раскрасим ребра из паросочетания, соответствующего в синий цвет, а соответствующего — в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится ребер синего цвета, ребер красного цвета, и будет выполняться соотношение . Рассмотрим подграф , индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам — синему и красному, либо одному — синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь . Поменяем в синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид , где . Что значит, что . |
Матроид паросочетаний
| Определение: |
| Пусть — неориентированный граф. паросочетание , покрывающее . Тогда называют матроидом паросочетаний (англ. matching matroid). |
| Утверждение: |
Матроид паросочетаний является матроидом. |
|
Проверим выполнение аксиом независимости: 1) Пустое паросочетание удовлетворяет условию. 2) Удалим из исходного паросочетания ребра, концами которых являются вершины из множества . Оставшееся множество ребер будет являться паросочетанием, покрывающим . Значит . 3) Пусть паросочетание покрывает множество , — множество . Все вершины, принадлежащие покроем ребрами из паросочетания . Так как Рассмотрим три возможных случая:
|
Матроид разбиений
| Определение: |
| Пусть , при этом , , и — положительные целые числа. . Тогда называют матроидом разбиений (англ. partition matroid) |
| Утверждение: |
Матроид разбиений является матроидом. |
|
Проверим выполнение аксиом независимости: 1)
2)
3) Пусть , но так как , то есть и . Из последнего следует, что . , а . Так как , тогда , но , противоречие. |
Бинарный матроид
| Определение: |
| Матроид представим над полем , если он изоморфен некоторому векторному матроиду над этим полем. |
| Определение: |
| Бинарный матроид (англ. binary matroid) — матроид, представимый над полем целых чисел по модулю . |
| Утверждение: |
Графовый матроид является бинарным. |
|
Составим матрицу инцидентности для графа . Строки этой матрицы соответствуют вершинам графа, а столбцы — ребрам.
Необходимо доказать, что если мы возьмем множество ребер , то множество столбцов матрицы инцидентности, соответствующее выбранным ребрам, линейно-независимо, и наоборот, если мы возьмем линейно-независимое множество столбцов, то соответствующее ему множество ребер, не будет образовывать цикла. Докажем эквивалентное утверждение: столбцы линейно-зависимы тогда и только тогда, когда соответствующие им ребра графа содержат цикл. Пусть столбцы линейно-зависимы, докажем, что соответствующие ребра графа содержат цикл. Если некоторые столбцы матрицы линейно-зависимы, то среди них можно выделить столбцы с нулевой суммой. Есть два варианта: 1) Cреди выбранных столбцов есть нулевой, тогда в соответствующем множестве ребер есть петля, то есть цикл. 2) У нас есть столбец , который является суммой остальных столбцов. Этому столбцу соответствует ребро . Начнем с вершины переходить по другим ребрам из (по каждому ребру проходим только один раз), в итоге мы придем в вершину , так для остальных вершин у нас обязательно будет четное число выходящих из них ребер, потому что иначе на позиции этой вершины в столбце была бы единица (а единицы у нас только на позициях и ). Таким образом мы показали, что существует два пути между вершинами и (тот который мы построили и путь по ребру ), значит в выбранном множестве ребер есть цикл. Пусть на множестве ребер есть цикл, докажем линейную-зависимость соответствующих столбцов. Если среди данного множества ребер есть петля, то соответствующий ей столбец будет нулевым (по построению матрицы инцидентности), он и обеспечивает линейную-зависимость всего набора векторов. Если петли нет, то рассмотрим столбцы, отвечающие ребрам простого цикла. Любая строка матрицы содержит в этих столбцах ровно 2 единицы. Поэтому сумма по модулю указанных столбцов равна нулевому столбцу, что означает линейную зависимость исходного множества столбцов. |
Другие матроиды
Несложно доказать, что следующие конструкции тоже являются матроидами.
| Определение: |
| Матроид с выкинутым элементом. Пусть — матроид. Определим . Для любых и получившаяся конструкция является матроидом. |
| Определение: |
| Матроид, стянутый по элементу. Пусть — матроид. Определим . Для любых и , таких что получившаяся конструкция является матроидом. |
| Определение: |
| Пусть — матроид. Обозначим как следующую констркуцию: , тогда называют урезанным матроидом. |
См. также
Источники
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды)
- Уилсон Р. — Введение в теорию графов (глава 9. Теория матроидов)
- Примеры матроидов
- Wikipedia — Matroid
- Википедия — Матроид