Точка сочленения, эквивалентные определения

Материал из Викиконспекты
Перейти к: навигация, поиск

Следующие определения являются эквивалентными:

Определение:
(1) Точка сочленения графа [math]G[/math] - вершина, принадлежащая как минимум двум блокам [math]G[/math].


Определение:
(2) Точка сочленения графа [math]G[/math] - вершина, при удалении которой в [math]G[/math] увеличивается число компонент связности.


Лемма:
Определения (1) и (2) эквивалентны.
Доказательство:
[math]\triangleright[/math]

(1 ⇒ 2) Пусть вершина [math]v[/math] принадлежит некоторым блокам [math]A[/math] и [math]B[/math]. Вершине [math]v[/math] инцидентны некоторые ребра [math]e=uv \in A[/math] и [math]f=wv \in B[/math]. Ребра [math]e[/math] и [math]f[/math] находятся в различных блоках, поэтому не существует пары непересекающихся путей между их концами. Один из этих путей может состоять только из [math]v[/math], поэтому любой путь, соединяющий [math]u[/math] и [math]w[/math], пройдет через [math]v[/math]. При удалении [math]v[/math] между [math]u[/math] и [math]w[/math] не останется путей, и одна из компонент связности распадется на две.

(2 ⇒ 1) Пусть [math]v[/math] принадлежала только одному блоку [math]C[/math]. Все вершины [math]u_1...u_n[/math], смежные с [math]v[/math], также лежат в [math]C[/math] (в силу рефлексивности отношения вершинной двусвязности). Теперь удалим [math]v[/math]. Но [math]u_1...u_n[/math] были концами ребер, удаленных из [math]C[/math] вместе с [math]v[/math], поэтому между каждой парой из них остался путь.

Рассмотрим [math]D[/math] - компоненту связности, в которой лежала [math]v[/math]. Пусть между вершинами [math]u, w \in D[/math] существовал путь, проходящий через [math]v[/math]. Но он проходил также через некоторые вершины из [math]u_1...u_n[/math], связность которых не нарушилась, поэтому есть как минимум еще один путь, отличный от удаленного. Противоречие: число компонент связности не увеличилось.
[math]\triangleleft[/math]


Теорема:
Следующие утверждения эквивалентны:

(1) [math]v[/math] - точка сочленения графа [math]G[/math];

(2) существуют такие вершины [math]u[/math] и [math]w[/math], отличные от [math]v[/math], что [math]v[/math] принадлежит любому простому пути из [math]u[/math] в [math]w[/math];

(3) существует разбиение множества вершин [math]V \setminus \{v\}[/math] на такие два подмножества [math]U[/math] и [math]W[/math], что для любых вершин [math]u \in U[/math] и [math]w \in W[/math] вершина [math]v[/math] принадлежит любому простому пути из [math]u[/math] в [math]w[/math].
Доказательство:
[math]\triangleright[/math]

(1 ⇒ 3) Так как [math]v[/math] - точка сочленения графа [math]G[/math], то граф [math]G \setminus v[/math] не связен и имеет по крайней мере две компоненты. Образуем разбиение [math]V \setminus \{v\}[/math], отнеся к [math]U[/math] вершины одной из этих компонент, а к [math]W[/math] - вершины всех остальных компонент. Тогда любые две вершины [math]u \in U[/math] и [math]w \in W[/math] лежат в разных компонентах графа [math]G \setminus v[/math]. Следовательно, любой простой путь из [math]u[/math] в [math]w[/math] графа [math]G[/math] содержит [math]v[/math].

(3 ⇒ 2) Следует из того, что (2) - частный случай (3).

(2 ⇒ 1) Если [math]v[/math] принадлежит любому простому пути в [math]G[/math], соединяющему [math]u[/math] и [math]w[/math], то в [math]G[/math] нет простого пути, соединяющего эти вершины в [math]G \setminus v[/math]. Поскольку [math]G \setminus v[/math] не связен, то [math]v[/math] - точка сочленения графа [math]G[/math].
[math]\triangleleft[/math]


Литература

  • Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009