Троичный сумматор

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Функциональная схема (англ. Functional Flow Block Diagram) — документ, разъясняющий процессы, протекающие в отдельных функциональных цепях изделия (установки) или изделия (установки) в целом. Функциональная схема является экспликацией (поясняющим материалом) отдельных видов процессов, протекающих в целостных функциональных блоках и цепях устройства.

Принципы построения функциональной схемы

Функциональная схема — вид графической модели изделия. Их использование и построение позволяет наглядно отразить устройство функциональных (рабочих) изменений, описание которых оперирует любыми (в том числе и несущественными) микросхемами, БИС и СБИС. Поскольку функциональные схемы не имеют собственной системы условных обозначений, их построение допускает сочетание кинематических, электрических и алгоритмических обозначений (для таких схем более подходящим термином оказывается комбинированные схемы).

Троичный полусумматор с одним неполным слагаемым

Первая ступень полного троичного сумматора.

Для сложения одного троичного разряда с разрядом переноса.

Результат не изменяется при перемене мест операндов.

[math]x_1=x[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]x_0=y[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]transfer[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]sum[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]0[/math]






transfer содержит разряд переноса, sum содержит сумму по модулю 3.

Результат операции занимает 1 и 2/3 троичных разряда.

Троичный полусумматор в несимметричной троичной системе счисления

Троичное логическое сложение двух троичных разрядов с разрядом переноса в несимметричной троичной системе счисления.

Результат не изменяется при перемене мест операндов.

Троичный полусумматор можно рассматривать, как объединение двух бинарных троичных функций: «логического сложения по модулю 3 в троичной несимметричной системе счисления» и «разряд переноса при сложении двух полных троичных разрядов в троичной несимметричной системе счисления».

В отличие от предыдущих бинарных троичных функций с одноразрядным результатом, результат функции занимает 1 и 2/3 троичных разрядов, так как при сложении в троичной несимметричной системе в разряде переноса не бывает значения больше единицы.

[math]x_1=x[/math] [math]2[/math] [math]2[/math] [math]2[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]x_0=y[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]transfer[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]sum[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]0[/math]






transfer — перенос в n + 1, несимметричный.

sum — сумма по модулю 3, несимметричная.

Источники информации