Вычислимые функции
Содержание
Основные определения
| Определение: |
Функция называется вычислимой (computable function), если существует программа, вычисляющая функцию , такая, что:
|
| Определение: |
| Функция называется вычислимой, если её график определено и равно является перечислимым множеством пар натуральных чисел. |
| Теорема: |
Приведенные определения эквивалентны. |
| Доказательство: |
|
for if return 1 Так как область определения вычислимой функции перечислима, то можно перебрать элементы области определения. Если алгоритм нашел нужную нам пару, то вернуть 1. for if returnТак как — перечислимое множество, то можно перебрать элементы этого множества. |
Замечание
Входами и выходами программ могут быть не только натуральные числа, но и двоичные строки, пары натуральных чисел, конечные последовательности слов и многое другое. Поэтому аналогичным образом можно определить понятие вычислимой функции для счётных множеств.
Примеры вычислимых функций
- Нигде не определённая функция вычислима.
while True
- , где — рациональное число.
return
Свойства вычислимой функции
| Лемма: |
— вычислимая функция, — область определения функции . Тогда является перечислимым множеством. |
| Доказательство: |
|
Для доказательства достаточно написать полуразрешающую программу. return 1Если функция определена на входе , то . Тогда необходимо вернуть 1. Иначе программа зависнет при вызове . |
| Лемма: |
— вычислимая функция, — область значений . Тогда является перечислимым множеством. |
| Доказательство: |
|
Для доказательства достаточно написать полуразрешающую программу. for if return 1Так как перечислимо, то можно перебрать элементы этого множества. Если программа находит слово, то она возвращает 1. |
| Лемма: |
— вычислимая функция, — перечислимое множество. Тогда является перечислимым множеством. |
| Доказательство: |
|
Для доказательства достаточно написать полуразрешающую программу. for if return 1Из замкнутости перечислимых языков относительно операции пересечения следует, что элементы множества можно перебрать. Если программа находит слово, то она возвращает 1. |
| Лемма: |
— вычислимая функция, — перечислимое множество. Тогда является перечислимым множеством. |
| Доказательство: |
|
Для доказательства достаточно написать полуразрешающую программу. if return 1На проверке условия программа может зависнут, если не определено или . Если не определено, то . Условие можно проверить, так как перечислимо. |
Характеристика перечислимых множеств через вычислимые функции
| Определение: |
Множество называется перечислимым (computably enumerable set), если выполняется хотя бы одно из условий:
|
| Теорема: |
Определения 1, 2, 3, 4 эквивалентны. |
| Доказательство: |
Пусть — программа, перечисляющая . Приведём программу , вычисляющую функцию : for if return 1
Пусть — область определения вычислимой функции , вычисляемой программой . Тогда перечисляется такой программой: for for if print
Пусть — область значений вычислимой функции , вычисляемой программой . Тогда перечисляется такой программой: for for if print
Пусть дана . Введём новую функцию , если . Очевидно, что она вычислима и что её область определения и область значений совпадают с . |
Теорема об униформизации
| Теорема: |
Пусть — перечислимое множество пар натуральных чисел. Тогда существует вычислимая функция , определённая на тех и только тех , для которых найдется , при котором , причём значение является одним из таких . |
| Доказательство: |
|
Напишем программу, вычисляющую функцию . for if returnТак как множество перечислимо, то его элементы можно перебрать. |
Теорема о псевдообратной функции
| Теорема: |
Для любой вычислимой функции существует вычислимая функция , являющаяся псевдообратной в следующем смысле: , и при этом для всех , при которых определена. |
| Доказательство: |
|
Напишем программу, вычисляющую функцию . for if returnТак как область определения вычислимой функции перечислима, то можно перебрать элементы области определения. |
Источники информации
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. с. 134, с. 176. ISBN 5-900916-36-7
- Wikipedia — Computable function
- Wikipedia — Computably enumerable set
- Википедия — Вычислимая функция
- Википедия — Перечислимое множество