Перечислимые языки
Версия от 03:58, 19 января 2016; Nafanya (обсуждение | вклад)
Содержание
Основные определения
Определение: |
Полуразрешимый язык (англ. semi-decidable language) — язык, для которого существует программа
| такая, что
Определение: |
Перечислимый язык (англ. recursively enumerable language) — язык, для которого существует программа | такая, что . Язык называется коперечислимым (англ. co-enumerable), если — перечислимый. Класс всех перечислимых языков называется , а всех коперечислимих - .
Определение: |
Пусть имеется некоторая программа | , которая может либо завершиться за конечное время и что-то вернуть, либо зависнуть. Запуск программы с тайм-лимитом (англ. time limit) будем обозначать как и иметь в виду следующее: если за операций программа корректно завершилась и что-то вернула, то вернёт то же самое; если же за операций программа не успела завершиться, то вернёт (символ зависания).
Теорема: |
— перечислимый — полуразрешимый. |
Доказательство: |
: Пусть — перечислимый язык. Тогда для него существует программа , которая по номеру выводит слово из . Значит, для всех из путем перебора значений функции мы можем найти такое , что . Следовательно, существует программа , такая, что . Тогда является полуразрешимым языком.(x): for if x return : Пусть (i): for for if ++ if return
(i): for if ++ if return |
Теорема: |
Любой разрешимый язык является перечислимым. |
Доказательство: |
Любой разрешимый язык | является полуразрешимым. Так как любой полуразрешимый язык является перечислимым, то является перечислимым.
Теорема: |
— перечислим и коперечислим — |
Доказательство: |
Рассмотрим полуразрешители для | и и одновременно запустим их для одного и того же элемента . принадлежит либо , либо , поэтому один из полуразрешителей успешно отработает и не зависнет. Значит, мы за конечное время узнаем, лежит ли в или нет. Таким образом, мы построили разрешитель для , то есть — разрешимый.
Примеры перечислимых языков
Утверждение: |
Язык натуральных чисел перечислим. |
Приведём программу, перечисляющую язык натуральных чисел:
return i
|
Утверждение: |
Язык чётных неотрицательных чисел перечислим. |
Приведём программу, перечисляющую язык чётных неотрицательных чисел:
return i * 2
|
Примеры коперечислимых языков
Утверждение: |
Язык нечётных неотрицательных чисел коперечислим. |
- язык чётных неотрицательных чисел. Так как язык чётных неотрицательных чисел перечислим, то и язык нечётных неотрицательных чисел тоже перечислим. |
Примеры неперечислимых языков
Утверждение: |
Язык пар неперечислим. |
Функция busy beaver — невычислима, следовательно такой язык неперечислим. |
Источники информации
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7
- Wikipedia — Recursively enumerable language
- Википедия — Рекурсивно перечислимый язык