F2Cmax
Версия от 00:05, 7 июня 2016; AMaltsev (обсуждение | вклад)
Задача: |
Рассмотрим задачу:
|
Содержание
Описание алгоритма
Пусть
- Алгоритм строит два списка и . Изначально они пусты. Также поддерживается множество еще не распределенных по спискам и работ
- Пока множество
- находим такие индексы и , что ,
- если минимум достигается на первом станке (иными словами ), то поставим работу в конец списка , иначе ставим в начало списка ,
- удаляем работу из множества .
не пусто, распределяем работы по спискам следующим образом:
- Рассмотрим список - конкатенацию и . Утверждается, что этот список является оптимальной перестановкой работ как на первом, так и на втором станке. Далее расставляем подряд работы на первом станке согласно перестановке, после чего ставим в том же порядке работы на втором станке, при этом избегая одновременного выполнения одной и той же работы.
Доказательство корректности алгоритма
Теорема: |
Существует оптимальное расписание, в котором станки выполняют работы в одном и том же порядке. |
Доказательство: |
Предположим обратное: что не существует оптимального расписания с одинаковыми перестановками работ на станках. Рассмотрим некоторое оптимальное расписание с максимальным по длине общим префиксом на станках. Пусть его длина равна , где . Пусть на позиции на первом и втором станках стоит работа , а на втором станке на позиции стоит работа . Тогда заметим, что если мы поставим работу на первом станке сразу после работы , то последовательные работы с по (см. Рис. 1) по-прежнему будут успевать выполниться, так как на втором станке они выполняются в текущем расписании после . Таким образом нам удалось увеличить длину наибольшего общего префикса, а так как по нашему предположению она была максимальна, то наше предположение неверно, то искомое расписание с одинаковым порядком выполнения работ на обоих станках существует. |
Таким образом задача сводится к поиску этой искомой перестановки. Докажем, что полученный приведенным выше алгоритмом список является оптимальной перестановкой работ.
Лемма (1): |
Если для каких-то работ и из списка верно неравенство , то работа встречается в списке раньше, чем . |
Доказательство: |
Пусть Так как . Случай рассматривается аналогично. , то работа . Работа либо стоит в , либо она стоит в и при этом . Заметим, что в обоих случаях она расположена позже (в силу нашего построения), чем работа . |
Лемма (2): |
Пусть имеем произвольное расписание, в котором работа идет сразу же после работы . Тогда если , то можем поменять местами эти работы без ухудшения целевой функции. |
Доказательство: |
Пусть — время, прошедшее с начала выполнения работы на первом станке до окончания работы на втором станке.Рассмотрим возможные случаи расположения работ и (см. Рис. 2)
Таким образом, .Иначе говоря, .Аналогично, Так как , то из условия леммы имеем . Добавим к обеим частям. Получим, что , то есть и при смене местами работ и ответ не ухудшается. |
Теорема: |
Построенная перестановка является оптимальной. |
Доказательство: |
Рассмотрим произвольную перестановку . Пусть перестановки и имеют общий префикс длины . Пусть и . Рассмотрим множество работ . Заметим, что для любой работы верно, что , так как если было бы верно обратное, то есть , то по лемме 1 было бы верно, что идет раньше , что неверно.Очевидно, что в перестановке Таким образом любая перестановка сводится к нашей без ухудшения ответа такими операциями, что подтверждает оптимальность перестановки работа будет стоять после (иначе общий префикс был бы длиннее), то заметим, что в этой перестановке для работы и для предыдущей работы верно (так как ), то по лемме 2 можем поменять местами работы и без ухудшения ответа. То такими операциями сможем дойти до пары работ и , которые при смене увеличат общий префикс перестановок и . |
Псевдокод
function F2Cmax(n: int, p: int[n][2]): list list L =list R = set X = while X Найти i и j , такие что if j == 1 L.addLast(i) else R.addFirst(i) X.remove(i) list T = L + R return T
Сложность алгоритма
Заметим, что на каждом шаге алгоритма мы выбираем минимум из оставшихся элементов за сортировкой, либо с помощью любой структуры данных, поддерживающей нахождение минимума и удаление за , например кучи). А так как мы делаем это раз, алгоритм работает за .
(либо предварительнойСм. также
Источники информации
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 175 стр. — ISBN 978-3-540-69515-8