Отображения
Версия от 11:43, 9 декабря 2010; Rybak (обсуждение | вклад)
Эта статья находится в разработке!
TODO: чтобы было не В разработке
Лекция от 13 сентября 2010 года.
Определение
Определение: |
Закон f, посредством которого каждому | , сопоставляется единственный , называют отображением.
Формы записи:
Определение: |
Если A и B состоят из чисел, f называется функцией. |
Отображение - три объекта: множество A(откуда), множество B(куда), функция f(как).
Связанные понятия
Пусть:
Тогда, g — сужение f на C,
— область определения f
— область значений f
— образ множества C при отображении f
— прообраз множества D при отображении f
Определение: |
Отображение | называется обратным отображением для f.
Термины "прямое" и "обратное" отображения взаимны.
Свойства отображений
Инъективное отображение - переводит разные элементы A в разные элементы B:
Сюръективное отображение(на множестве B) - каждый элемент множества B является образом хотя бы одного элемента множества A:
Биективное отображение - инъекция + сюръекция - взаимно однозначное соответствие, обладает двумя предыдущими свойствами.