Теорема Кэли
| Теорема (Кэли(Cayley), о вложении любой конечной группы в группу перестановок): |
Любая конечная группа порядка изоморфна некоторой подгруппе группы перестановок (подгруппе симметрической группы ). |
| Доказательство: |
|
Пусть — бинарная операция в конечной группе . Для каждого элемента построим соответствующую перестановку где . — перестановка, так как
Пусть — композиция двух перестановок. Если — перестановка, то — обратная перестановка, где — обратный элемент , так как . Если — нейтральный элемент в группе, то — тождественная перестановка. Докажем,что множество всех перестановок — подгруппа симметрической группы . Пусть .Рассмотрим перестановку . Так как — группа, то для любого верно , Так как — группа, то и , откуда . Значит, — подгруппа группы . Осталось доказать, что и изоморфны. Для этого рассмотрим отображение , которое переводит элемент в элемент , где симметричен элементу в группе . Заметим, что
, то есть отображение сохраняет операцию. Значит, оно является изоморфизмом групп и . |
Примеры
Примером и иллюстрацией для данной теоремы является группа — группа остатков по модулю 3, с операцией сложения.
Пусть
См. также
- Умножение перестановок, обратная перестановка, группа перестановок
- Действие перестановки на набор из элементов, представление в виде циклов
- Таблица инверсий
- Матричное представление перестановок