Использование обхода в глубину для поиска точек сочленения
Дан связный неориентированный граф . Найти все точки сочленения в за время
Алгоритм
| Теорема: |
Пусть — дерево обхода в глубину, — корень . Вершина — точка сочленения — сын : из или любого потомка вершины нет обратного ребра в предка вершины . — точка сочленения имеет хотя бы двух сыновей в дереве поиска в глубину. |
| Доказательство: |
|
|
Пусть — время входа поиска в глубину в вершину . Через обозначим минимум из времени захода в саму вершину , времен захода в каждую из вершин , являющуюся концом некоторого обратного ребра , а также из всех значений для каждой вершины , являющейся непосредственным сыном в дереве поиска.
Тогда из вершины или её потомка есть обратное ребро в её предка такой сын , что .
Таким образом, если для текущей вершины существует непосредственный сын : , то вершина является точкой сочленения, в противном случае она точкой сочленения не является.
Реализация
function findCutPoints(G[n]: Graph): // функция принимает граф G с количеством вершин n и выполняет поиск точек сочленения во всем графе
visited = array[n, false]
function dfs(v: int, p: int):
time = time + 1
up[v] = tin[v] = time
visited[v] = true
for u: (v, u) in G
if u == p
continue
if visited[u] == true
up[v] = min(up[v], tin[u])
else
dfs(u, v)
up[v] = min(up[v], tin[u])
if up[to] >= tin[v] && p != -1 //если граф состоит из 2 вершин и одного ребра, то p != -1 спасёт, иначе выведет 1 точку сочленения
v — cutpoint
if v — root
v — cutpoint
for i = 1 to n
if visited[i] == false
dfs(i, -1)
См. также
Источники информации
- Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — Лань, 2010. — 368 с. — ISBN 978-5-8114-1068-2
- MAXimal :: algo :: Поиск точек сочленения