Теорема Кэли
| Теорема (Кэли(Cayley), о вложении любой конечной группы в группу перестановок): |
Любая конечная группа порядка изоморфна некоторой подгруппе группы перестановок (подгруппе симметрической группы ). |
| Доказательство: |
|
Пусть — бинарная операция в конечной группе . Для каждого элемента построим соответствующую перестановку где . — перестановка, так как
Пусть — композиция двух перестановок. Если — перестановка, то — обратная перестановка, где — обратный элемент , так как . Если — нейтральный элемент в группе, то — тождественная перестановка. Докажем,что множество всех перестановок — подгруппа симметрической группы . Пусть .Рассмотрим перестановку . Так как — группа, то для любого верно , Так как — группа, то и , откуда . Значит, — подгруппа группы . Осталось доказать, что и изоморфны. Для этого рассмотрим отображение , которое переводит элемент в элемент , где симметричен элементу в группе . Заметим, что
|
Примеры
Рассмотрим конечную группу с операцией — сложения по модулю . Найдём подгруппу , изоморфную ,то есть найдём отображение в . Пусть
и
где .
То есть
.
Тогда находим три перестановки, составляющие группу :
Таким образом, мы нашли подгруппу группы перестановок, изоморфную конечной группе .
Применение
Теорема Кэли позволяет найти для любой конечной группы с определённой бинарной операцией изоморфную её подгруппу группы перестановок.