Алгоритм Кока-Янгера-Касами, модификация для произвольной грамматики
Версия от 21:58, 17 января 2017; 188.162.64.39 (обсуждение)
Задача: |
Пусть дана контекстно-свободная грамматика и слово . Требуется выяснить, выводится ли это слово в данной грамматике. |
Базовая версия данного алгоритма работает только для грамматик в нормальной форме Хомского. Модифицируем алгоритм для работы на произвольных контекстно-свободных грамматиках.
Алгоритм для произвольной грамматики
Будем решать задачу динамическим программированием. Введём динамику базовой версии алгоритма.
, аналогичноТакже введём вспомогательный четырехмерный массив
тогда и только тогда, когда из префикса длины правой части данного правила можно вывести .Рассмотрим все тройки
, где — константа и , и такое, что .- База динамики:
- , если в грамматике присутствует правило , иначе ;
- , если в грамматике присутствует правило , иначе ;
- .
- Переход:
- Пусть значения для всех нетерминалов, пар и уже вычислены, поэтому вспомогательная динамика: . То есть, подстроку можно вывести из префикса длины правой части данного правила, если из префикса длины правой части данного правила можно вывести , а подстрока выводится из -го символа правой части правила. Это вычисление может обратится к , но на результат это не повлияет, так как в данный момент .
- Но если — терминал, то подстроку можно вывести из префикса длины правой части данного правила, если из префикса длины правой части данного правила можно вывести , а подстрока выводится, если .
- Базовая динамика выражается так: . То есть, подстроку можно вывести из нетерминала , если из длины правой части данного правила можно вывести ,
- Завершение:
- После окончания работы ответ содержится в ячейке , где .
Оценка сложности
Обозначим
— максимальную длину правой части правила.Обработки правил вида
и выполняются за .за . Проход по всем подстрокам выполняется за .
Расчёт вспомогательной динамики занимает
времени, основной динамики — . Итоговая временная сложность алгоритма равна . Алгоритму требуется памяти.