Разложение рациональной функции в ряд

Материал из Викиконспекты
Версия от 14:03, 28 мая 2017; 37.139.97.223 (обсуждение) (Общий алгоритм)
Перейти к: навигация, поиск

Определения

Определение:
Рациональная функция — это функция вида:

[math]G(z)=\dfrac{P(z)}{Q(z)}[/math],

где [math]P[/math] и [math]Q[/math] - полиномы.


Рациональные производящие функции получаются при решении линейных рекуррентных соотношений. По этой причине актуальной является задача о разложении рациональной функции в ряд по степеням переменной [math]z[/math].
Чтобы разложить дробь в ряд, необходимо разбить её на сумму элементарных дробей.

Определение:
Элементарными дробями будем называть дроби вида:

[math]\dfrac{A}{(x-a)^n}, \qquad \dfrac{Bx + C}{(x^2 + px + q)^m}[/math],

где [math] m, n \geqslant 1[/math], и [math]p^2 - 4q \lt 0[/math]


Затем, элементарные дроби сможем разложить в ряд, пользуясь формулами преобразования производящих функций и таблицей производящих функций.

Общий алгоритм

  1. Привести дробь [math]\dfrac{P(z)}{Q(z)}[/math] к такому виду, чтобы степень числителя была меньше степени знаменателя. Если [math]\deg(P) \gt \deg(Q)[/math], то можем записать [math]G(z)=\dfrac{P(z)}{Q(z)} = R(z)+\dfrac{P_0(z)}{Q(z)},[/math] где [math]\deg(P_0) \lt \deg(Q)[/math].
  2. Разобьем знаменатель [math]Q(z)[/math] на множители [math]Q(z) = (z_k-z)^{k_s} *...[/math], где [math]z_1, z_2, ..., z_s[/math] - корни уравнения [math]Q(z) = 0[/math]. При этом, [math]k_1+k_2+⋅⋅⋅+k_s=\deg (Q)[/math] После разбиения знаменателя на множители получим: [math]G(z)=\dfrac{P(z)}{(z1-z)^k1 *...(zs-z)^ks}[/math] (k1, ks - сделать индексами)
  3. Приведем G(z) к сумме дробей, знаменатели которых будут иметь вид (zj−z)^kj, а числители — полиномы Pj(z), причем deg Pj(z)<kj. [math]G(z)=\dfrac{P(z)}{(z1-z)^k1 *...(zs-z)^ks} = \sum\limits \dfrac{Pj(z)}{(zj-z)^kj}[/math]. Найдем Pj(z) с помощью метода неопределенных коэффициентов.


Метод неопределенных коэффициентов

  1. Записать сумму дробей, знаменатили которых будут иметь вид (zs−z)ks, а числители — полиномы с неопределёнными коэффициентами, имеющие степень ks−1.
  2. Сложить выписанные дроби и сгруппировать слагаемые в числителе по степеням z.
  3. Прировнять полученные выражения с неопределёнными коэффициентами к соответсвующим коэффициентам полинома P(z), составив, таким образом, систему линейных уравнений.
  4. Решить систему и получить значения неопределённых коэффициентов.

Примеры