Материал из Викиконспекты
Определение: |
Панциклический граф (англ. pancyclic graph) — граф, в котором есть циклы всех длин от [math] 3 [/math] до [math] n [/math] . Если граф содержит все циклы от [math] r [/math] до [math] n [/math], то такой граф называют [math] r [/math]-панциклическим. |
Теорема (J. A. Bondy): |
[math]G = \lt V, E\gt [/math] — гамильтонов граф, [math]|V| = n, |E| \geq n^2/4 [/math].
Тогда верно одно из двух утверждений:
- [math] G [/math] — панциклический граф
- [math] G [/math] = [math]K_{n / 2, n / 2}[/math]
|
Теорема (Schmeichel & Hakimi): |
[math]G = \lt V, E\gt [/math] — гамильтонов граф, [math]|V| = n, v_1 v_2 v_3 \ldots v_n v_1 [/math] — его гамильтонов цикл, для которого выполняется неравенство [math] deg(v_1) + deg(v_n) \geq n [/math].
Тогда [math] G [/math] — панциклический граф, двудольный граф или граф, в котором нет только цикла длины [math](n-1)[/math]. |
Ссылки