Задача о наименьшей суперпоследовательности
| Определение: | 
| Последовательность является суперпоследовательностью (англ. supersequence) последовательности , если существует строго возрастающая последовательность индексов таких, что для всех выполняется соотношение . | 
| Определение: | 
| Последовательность является общей суперпоследовательностью (англ. common supersequence) последовательностей и , если и являются подпоследовательностями . | 
| Задача: | 
| Пусть имеются последовательности и . Необходимо найти | 
Содержание
Наивное решение
Заметим, что если приписать к одной из данной последовательность другую, то полученная последовательность будет их суперпоследовательностью с длиной . Запомним все элементы обеих последовательностей и из них построим все возможные последовательности. Тогда искомая гарантированно найдётся, однако время работы алгоритма будет экспоненциально зависеть от длины исходных последовательностей.
Динамическое программирование
Решение
Обозначим за SCS префиксов данных последовательностей и , заканчивающихся в элементах с номерами и соответственно. Наименьшая общая суперпоследовательность и должна содержать каждый символ обеих последовательностей, поэтому если , то это просто последовательность . Аналогичен случай, когда . Если и , то возможны два случая. Если , то SCS должна включать оба этих элемента. Значит нужно выбрать оптимальный из ответов для префиксов, включающих один элемент и не включающих второй, и выбрать из них минимальный. Если же , то SCS для последовательностей и должна заканчиваться этим элементом, так как он общий для них. Получается следующее рекуррентное соотношение:
Очевидно, что сложность алгоритма составит , где и — длины последовательностей.
Восстановление ответа
В помимо длины последовательности хранятся и символ, добавленный последним. Таким образом, зная длину SCS, можно восстановить и саму последовательность.
Псевдокод
x, y — данные последовательности; — SCS для префикса длины i последовательности x и префикса длины j последовательности y; prev[i][j] — пара индексов элемента таблицы, которые предшествовали .
fun SCS(x: int, y: int):    // аналог void 
   m = x.size
   n = y.size
   for i = 1 to m
     scs[i][0] = i
   for j = 0 to n
     scs[0][j] = j
   for i = 1 to m
     for j = 1 to n
       if x[i] == y[j]
         scs[i][j] = 1 + scs[i - 1][j - 1]
         prev[i][j] = pair(i - 1, j - 1)
       else
         if scs[i - 1][j] <= lcs[i][j - 1]
           scs[i][j] = 1 + scs[i - 1][j]
           prev[i][j] = pair(i - 1, j)
         else
           scs[i][j] = 1 + scs[i][j - 1]
           prev[i][j] = pair(i, j - 1)
 
fun printLCS(m: int, n: int): // вывод SCS
   i = m
   j = n
   ans = [] // массив ответа 
   while i > 0 and j > 0
     if prev[i][j] == pair(i - 1, j - 1)
       ans.append(x[i])
       i -= 1
       j -= 1
     else
       if prev[i][j] == pair(i - 1, j)
         ans.append(x[i])
         i -= 1
       else
         ans.append(y[j])
         j -= 1
   while i > 0 // добавляем оставшиеся символы первой последовательности 
     ans.append(x[i])
     i -= 1
   while j > 0
     ans.append(y[j]) // добавляем оставшиеся символы второй последовательности 
     j -= 1
   reverse(ans) // разворачиваем последовательность, так как шли с конца 
   return ans
Связь с наибольшей общей подпоследовательностью
| Теорема: | 
| , где  - длина  наибольшей общей подпоследовательности,  - длина наименьшей общей суперпоследовательности,  и  - длины последовательностей  и  соответсвенно. | 
| Доказательство: | 
| Пусть , . Обозначим за их SCS и будем ее строить. Так как являетcя подпоследовательностью , то можно представить так: Мы должны поставить на место некоторых пропусков поставить элементы , так чтобы суммарная длина была минимальна, и был подпоследовательностью . Заметим, что если найдется подпоследовательность такая, что является подпоследовательностью , то все элементы этой подпоследовательности уже находятся в , а значит их не нужно вставлять. Поэтому мы добавим не меньше чем . Длину нужно минимизировать, значит имеет место равенство: .Поэтому: | 
