Начальные определения
Множество - первичное математическое понятие, которому не может быть дано строгое математическое определение. Часто множество определяют как «совокупность объектов, объединенных общим свойством».
В математическом анализе используется «наивная» теория множеств, которая является удобным языком описания фактов. Создана немецким математиком Г. Кантором(1870).
[math]a \in A[/math] (объект а принадлежит множеству А)
[math]a \notin A[/math] (объект а не принадлежит множеству А)
Задание множеств
1) Перечислением элементов: [math] A = \{a_1, a_2 ..., a_n, ...\} [/math]
2) Заданием определенного свойства обьектов: [math] A = \{a: P\} [/math] , где P — определенное свойство обьекта а
Операции
- [math] A \subset B [/math] (A является подмножеством B, каждый элемент из А также принадлежит В ([math] \forall x: x \in A \Rightarrow x \in B [/math]);
- [math] A \cap B [/math] (Пересечение множеств А и В: [math] (x \in A) \wedge (x \in B) [/math]);
- [math] A \cup B [/math] (Объединение множеств А и В: [math] (x \in A) \vee (x \in B) [/math]);
- [math] B \backslash A [/math] (Разность множеств: [math] (x \in B) \wedge (x \notin A) [/math];
- [math] \varnothing [/math] — пустое множество:
- [math] A \cup \varnothing = A [/math]
- [math] A \cap \varnothing = \varnothing [/math]
- [math] \forall A: \varnothing \subseteq A [/math]
- [math] \bigcup\limits_{\alpha\in W} A_\alpha[/math] — объединение нескольких множеств. В общем случае может состоять из бесконечного количества множеств:
- [math] \bigcup\limits_{j \in N} A_j = A_1 \cup A_2 \cup [/math] ...
- [math] \bigcup\limits_{0 \lt x \lt 1} A_x [/math]
- [math] \bigcup\limits_{\alpha \in W} A_{\alpha} [/math], и так далее..
- [math] A \cup B \cup C ... \subseteq U [/math] — «множество всего», «универсальное множество».
- [math]\overline{A} = U [/math] \ [math] A [/math] — дополнение множества А, дополнительное множество к А до U;
Теорема де Моргана
Теорема (де Моргана): |
[math]\overline{\bigcup\limits_\alpha A_\alpha} = \bigcap\limits_\alpha \overline{A_\alpha} \\
\overline{\bigcap\limits_\alpha A_\alpha} = \bigcup\limits_\alpha \overline{A_\alpha} [/math] |
Доказательство: |
[math]\triangleright[/math] |
Докажем первое утверждение, второе доказывается аналогично.
Для того, чтобы доказать равенство множеств, докажем, что первое множество включает второе и наоборот (частый приём при доказательстве равенства двух множеств).
- [math]\overline{\bigcup\limits_\alpha A_\alpha} \subseteq \bigcap\limits_\alpha \overline{A_\alpha}[/math]
- Пусть [math]x \in \left ( \overline{\bigcup\limits_\alpha A_\alpha} \right )[/math]. Значит, что не существует [math]\alpha_1[/math] такого, что [math]x \in A_{\alpha_1}[/math]. Следовательно, [math]x \in \overline{A_\alpha}[/math] для любого [math]\alpha[/math] и [math]x \in \left (\bigcap\limits_\alpha \overline{A_\alpha} \right )[/math].
- В силу выбора [math]x[/math] (любой элемент множества [math]\overline{\bigcup\limits_\alpha A_\alpha}[/math]) следует искомое включение.
- [math]\bigcap\limits_\alpha \overline{A_\alpha} \subseteq \overline{\bigcup\limits_\alpha A_\alpha}[/math]
- Пусть [math]x \in \left ( \bigcap\limits_\alpha \overline{A_\alpha} \right )[/math]. Тогда для любого [math]\alpha[/math] [math]x \in \overline{A_\alpha}[/math], то есть, [math]x \notin A_\alpha[/math]. Поскольку [math]x[/math] не входит ни в одно объединяемое множество, то [math]x \notin \bigcup\limits_\alpha A_\alpha[/math], то есть, [math]x \in \overline{\bigcup\limits_{\alpha} A_\alpha}[/math]
- Аналогично, в силу выбора [math]x[/math] выполняется искомое включение.
|
[math]\triangleleft[/math] |
Теорема де Моргана устанавливает двойственность понятий объединения и пересечения множеств. То есть, имея некоторое верное равенство, содержащее объединения и пересечения, можно переписать его, заменив пересечения на объединения и наоборот. Например, из равенства
- [math](A \cup B) \cap C = (A \cap C) \cup (B \cap C)[/math] следует равенство
- [math](A \cap B) \cup C = (A \cup C) \cap (B \cup C)[/math].
Доказывается это следующим образом: равны множества, значит, равны дополнения. После раскрытия дополнений приходим к написанному равенству.