Арифметика чисел в b-ичной системе счисления (Длинная арифметика)
| Определение: |
| Длинная арифметика (англ. arbitrary-precision arithmetic, или bignum arithmetic) — это набор программных средств (структуры данных и алгоритмы), которые позволяют работать с числами гораздо больших величин, чем это позволяют стандартные типы данных. |
| Определение: |
| Классическая длинная арифметика — длинная арифметика, основная идея которой заключается в том, что число хранится в виде массива его цифр. Цифры могут использоваться из той или иной системы счисления, обычно применяются десятичная система счисления и её степени (десять тысяч, миллиард), двоичная система счисления либо любая другая. |
Представление в памяти
Один из вариантов хранения длинных чисел — массив целых чисел , где каждый элемент — это одна цифра числа в b-ичной системе счисления. Цифры будут храниться в массиве в следующем порядке: сначала идут наименее значимые цифры (т.е., например, единицы, десятки, сотни, и т.д.).
Кроме того, все операции реализуются таким образом, что после выполнения любой из них лидирующие нули (т.е. лишние нули в начале числа) отсутствуют (разумеется, в предположении, что перед каждой операцией лидирующие нули также отсутствуют). Следует отметить, что в представленной реализации для числа ноль корректно поддерживаются сразу два представления: пустой вектор цифр, и вектор цифр, содержащий единственный элемент — ноль.
Операции над числами
Операции над числами производятся с помощью "школьных" алгоритмов сложения, вычитания, умножения, деления столбиком. После совершения операций следует не забывать удалять лидирующие нули, чтобы поддерживать предикат о том, что таковые отсутствуют. К ним также применимы алгоритмы быстрого умножения: Быстрое преобразование Фурье и Алгоритм Карацубы.
Сложение
//Прибавляет к числу a число b и сохраняет результат в a:
carry = 0
i = 0
while i < max(a.size(),b.size()) || carry
if i == a.size()
a.push_back (0)
a[i] += carry + (i < b.size() ? b[i] : 0)
carry = a[i] base
if carry
a[i] -= base
i++
Вычитание
//Отнимает от числа a число b (a b) и сохраняет результат в a:
carry = 0
i = 0
while i < b.size() || carry
a[i] -= carry + (i < b.size() ? b[i] : 0)
carry = a[i] < 0
if carry
a[i] += base
i++
while a.size() > 1 && a.back() == 0
a.pop_back()
//Здесь мы после выполнения вычитания удаляем лидирующие нули, чтобы поддерживать предикат о том, что таковые отсутствуют.
Умножение длинного на короткое
//Умножает длинное a на короткое b (b < base) и сохраняет результат в a:
carry = 0
i = 0
while i < a.size() || carry
if i == a.size()
a.push_back (0)
long long cur = carry + a[i] 1ll b;
a[i] = cur mod base
carry = cur / base
i++
while a.size() > 1 && a.back() == 0
a.pop_back()
//Здесь мы после выполнения деления удаляем лидирующие нули, чтобы поддерживать предикат о том, что таковые отсутствуют.
Умножение двух длинных чисел
//Умножает a на b и результат сохраняет в c:
carry = 0
i = 0
while i < a.size()
j = 0
while (j < b.size() || carry)
long long cur = c[i+j] + a[i] 1ll (j < (int)b.size() ? b[j] : 0) + carry
c[i+j] = cur mod base
carry = cur / base
i++
j++
while c.size() > 1 && c.back() == 0
c.pop_back()
Деление длинного на короткое
//Делит длинное a на короткое b (b < base), частное сохраняет в a, остаток в carry:
carry = 0
i = a.size()-1
while i \geqslant 0
long long cur = a[i] + carry 1ll base
a[i] = cur mod base
carry = cur / base
i--
while a.size() > 1 && a.back() == 0
a.pop_back()
Подбор значения очередной цифры в алгоритме деления в столбик
Подбор следующей цифры частного можно производить с помощью стандартного алгоритма двоичного поиска за .
Но также существуют и более быстрые алгоритмы. Довольно интересный способ состоит в высказывании догадки (qGuess) по первым цифрам делителя и делимого. Понятно, что этих нескольких цифр недостаточно для гарантированно правильного результата, однако неплохое приближение все же получится. Пусть очередной шаг представляет собой деление некоторого на . Если (где BASE — основание системы счисления), то можно доказать следующие факты:
- 1. Если положить qGuess , то qGuess qGuess.
Иначе говоря, вычисленная таким способом “догадка” будет не меньше искомого частного, но может быть больше на или .
- 2. Если же дополнительно выполняется неравенство qGuess BASE , где – остаток при нахождении qGuess и qGuess BASE, то qGuess qGuess, причем вероятность события qGuess приблизительно равна .
Таким образом, если , то можно вычислить qGuess и уменьшать на единицу до тех пор, пока не станут выполняться условия. Получившееся значение будет либо правильным частным , либо, с вероятностью , на единицу большим числом.
Что делать, если слишком мало, чтобы пользоваться таким способом? Например, можно домножить делитель и делимое на одно и то же число scale . В случае, если основание системы счисления является степенью двойки, scale можно выбрать соответствующей степенью двойки. При этом несколько изменится способ вычисления остатка, а частное останется прежним. Такое домножение иногда называют нормализацией числа. На тот случай, если qGuess получилось все же на единицу большим , будем использовать вычитание, которое вместо отрицательного числа даст дополнение до следующей степени основания. Если такое произошло, то последний перенос будет равен . Это сигнал, что необходимо прибавить одно B назад. Заметим, что в конце сложения будет лишний перенос на единицу, о котором нужно забыть (он компенсирует последний перенос ).