Обсуждение:Производные некоторых элементарных функций

Материал из Викиконспекты
Перейти к: навигация, поиск

Пофиксил всякую мелочь, теперь вроде все совсем правильно. На всякий случай сравните с предыдущим. --Дмитрий Герасимов

Второй замечательный предел

Тут нет доказательства, есть тольок вывод следствия. --Дмитрий Герасимов 01:52, 4 января 2011 (UTC)

  • Доказательство не нужно, ведь есть определение числа e! --Мейнстер Д. 01:08, 5 января 2011 (UTC)

(e^x - 1)/x

В самом конце:

Рассмотрим выражение [math]\frac{x^n - 1}{mx}, \ x \to 0[/math]. Оно (?)создаёт неопределённость [math]\frac00[/math]. При этом, предел нельзя вычислить переходом к нему в числителе и знаменателе по отдельности. Этот предел подстановкой сводится к предыдущим.

  • Так вот, это выражение если и создает неопределенность то -1/0. У меня такое подозрение что там должно быть [math]\frac{n^x - 1}{mx}, \ x \to 0[/math]. В общем, у кого адекватный конспект, посмотрите. --Дмитрий Герасимов 01:52, 4 января 2011 (UTC)
    • У меня оказался неожиданно адекватный конспект в этом месте, исправил на то выражение, которое было там. --Мейнстер Д. 01:08, 5 января 2011 (UTC)

Производные x^n, x^(1/n) и т.д

Там, наверное, везде должно быть n - натуральное, а написано - целое. Или я чего-то не понимаю?

  • По идее, здесь и с целыми числами всё нормально прокатывает. За исключением случая, когда во второй функции n=0
    • Да нет, не совсем прокатывает, равенство доказано только для натуральных n. Но расширить его на целые числа не составляет труда.

e^x

  • Это единственная функция, которая обладает таким свойством(это просто забавный факт, его не надо доказывать).
    • Я бы не стал так голословно разбрасываться словами. Таким же свойством обладает функция [math]y=0[/math]
      • И вообще любая функция вида [math]y=c \cdot e^x[/math], где [math]c \in \mathbb R[/math] --Андрей Рыбак 01:41, 7 января 2011 (UTC)