Модель алгоритма и её выбор
Содержание
Понятие модели
Пусть дана обучающая выборка
, где — множество значений признаков, — множество, содержащее для каждого элемента из X его классификацию.Пусть множество всевозможных значений признаков
, множество всевозможных классификаций .Пусть задана функция
, где W - множество дополнительных параметров (весов) функции.Описанная выше функция f для фиксированного значения весов
называется решающим правилом.Модель — это совокупность всех решающих правил, которые получаются путем присваивания весам всех возможных допустимых значений.
Формально модель
.Модель определяется множеством допустимых весов
и структурой решающего правилаПонятие гиперпараметров модели
Гиперпараметры модели — это параметры, значения которых задается до начала обучения модели и не изменяется в процессе обучения. У модели может не быть гиперпараметров.
Параметры модели — это параметры, которые изменяются и оптимизируются в процессе обучения модели и итоговые значения этих параметров являются результатом обучения модели.
Примерами гиперпараметров могут служить количество слоев нейронной сети, а также количество нейронов на каждом слое. Примерами параметров могут служить веса ребер нейронной сети.
Для нахождения оптимальных гиперпараметров модели могут применяться различные алгоритмы настройки гиперпараметров[на 08.01.19 не создан].
См. также
- Настройка гиперпараметров[на 08.01.19 не создан]
- Переобучение
- Мета-обучение[на 08.01.19 не создан]
Примечания
Источники информации
- Выбор модели - презентация на MachineLearning.ru
- Гиперпараметры - статья на Википедии
- Разница между параметрами и гиперпараметрами - описание разницы между параметрами и гиперпараметрами модели