Использование обхода в глубину для поиска компонент сильной связности
Постановка задачи
Дан ориентированный граф . Требуется найти в этом графе компоненты сильной связанности.
Алгоритм
| Определение: |
| Дополнением или обратным к графу называется такой граф , имеющий то же множество вершин, что и , но в котором две несовпадающие вершины смежны тогда и только тогда, когда они не смежны в |
Данная задачи решается с помощью поиска в глубину в 3 этапа:
- Построить обратный граф
- Выполнить в обратном графе поиск в глубину и найти - время окончания обработки вершины
- Выполнить поиск глубину в , перебирая вершины во внешнем цикле в порядке убывания
Полученные на 3-ем этапе деревья поиска в глубину будут являться компонентами сильной связности графа .
Так как компоненты сильной связности исходного и обратного графа совпадают, то первый поиск в глубину для нахождения можно выполнить на графе , а второй - на обратном.
Доказательство
Рассмотрим пару вершин и .
Если вершины и взаимно достижимы, то они обязательно будут находиться в одном дереве поиска в глубину, поскольку, когда просматривается первая из них, вторая остаётся непосещённой и достижимой из первой и будет просмотрена, прежде чем завершится рекурсивный вызов из корня.
Теперь докажем, что если и находятся в одном дереве поиска, то они являются сильно связанными. Пусть - корень этого дерева. Тогда достижима из , из чего следует, что в обратном графе достижима из . Но имеет большее время окончания обработки > , из чего следует что в обратном графе существует путь из в . Если бы его не сущевствовало, то путь из в в обратном графе оставлял бы с большим временем оканчания обработки . Тогда в исходном графе существуют пути как из в , так и из в , т.е. и сильно связаны. Те же рассуждения доказывают, что и сильно связаны, из чего следует что и также сильно связаны.
Пример реализации
vector<vector<int>> g, g1; //g хранит граф в виде списка смежностей, g1 - обратный
vector<int> color, ord, component; //цвет вершины, список вершин в порядке окончания обработки, номер компоненты, к который относиться вершина
int col; //номер текущей компоненты
void dfs(int & v) //первый поиск в глубину, определяющий порядок обхода
{
color[v] = 1;
for (unsigned i = 0; i < g[v].size(); ++i)
{
if (color[g[v][i]] == 0)
dfs(g[v][i]);
}
ord.push_back(v);
}
void dfs2(int & v) //второй поиск в глубину, выявляет компоненты сильной связности в графе
{
component[v] = col;
for (unsigned i = 0; i < g1[v].size(); ++i)
{
if (component[g1[v][i]] == 0)
dfs2(g1[v][i]);
}
}
int main()
{
... //считываем исходные данные, формируем массивы g и g1
for (int i = 1; i <= n; ++i) //формируем массив ord[]
{
if (color[i] == 0)
dfs(i);
}
col = 1;
for (int i = ord.size(); i > 0; --i) //ищем компоненты связности, вызывая вершины в обратном порядке
{ //от сохранённого в ord[], что соответствует уменьшению времени конца обработки f[]
if (component[ord[i - 1]] == 0)
dfs2(ord[i - 1]), col++;
}
}
По окончании выполнения алгоритма в имеем номер компоненты, к которой принадлежит вершина .
Литература
- Р.Седжвик. "Фундаментальные алгоритмы на С++. Алгоритмы на графах" - СПб, ДиаСофтЮП, 2002