Оценка качества в задаче кластеризации
Проблема оценки качества в задаче кластеризации трудноразрешима, как минимум, по двум причинам:
- Не существует оптимального алгоритма кластеризации. Иными словами, различные алгоритмы (или различные конфигурации одного алгоритма) выдают разные разделения на кластеры, и ни одно из них не является лучшим во всех ситуациях [8].
- Многие алгоритмы кластеризации не способны определить настоящее количество кластеров в данных. Чаще всего количество кластеров подается на вход алгоритма и подбирается несколькими запусками алгоритма. [1]
Содержание
Методы оценки качества кластеризации
Метод (индекс) оценки качества кластеризации (англ. cluster validity index, CVI[осн.статья]) — инструментарий для количественной оценки результатов кластеризации.
Принято выделять три группы методов оценки качества кластеризации:
- Внешние (англ. Internal) метрики основаны на сравнении результата кластеризации с априори известным разделением на классы.
- Внутренние (англ. External) метрики отображают качество кластеризации только по информации в данных.
- Относительные (англ. Relative) метрики основаны на оценивании полученного разделения на кластеры относительно результатов работы другого алгоритма.
Иногда сложно отнести метод оценки качества кластеризации к одному определенной группе, поэтому нижеприведенное разделение является условным, в других источниках можно встретить иное разделение.
Внешние метрики оценки качества
Данные метрики используют дополнительные знания о кластеризуемом множестве: распределение по кластерам, количество кластеров и т.д.
Rand Index
Рассмотрим пары
из элементов кластеризуемого множества . Подсчитаем количество пар, в которых:- Элементы принадлежат одному кластеру и одному классу —
- Элементы принадлежат одному кластеру, но разным классам —
- Элементы принадлежат разным кластерам, но одному классу —
- Элементы принадлежат разным кластерам и разным классам —
Индекс Rand оценивает, насколько много из тех пар элементов, которые находились в одном классе, и тех пар элементов, которые находились в разных классах, сохранили это состояние после кластеризации алгоритмом.
Имеет область определения от 0 до 1, где 1 - полное совпадение кластеров с заданными классами, а 0 - отсутствие совпадений.
Adjusted Rand Index
Дано множество
из элементов, и два разделения на кластеры и , совпадения между и могут быть отражены в таблице сопряженности , где каждое обозначает число объектов, входящих как в , так и в : .Тогда Adjusted Rand Index вычисляется по формуле:
где
— значения из таблицы сопряженности.В отличие от обычного Rand Index, Adjusted Rand Index может принимать отрицательные значения, если .
Jaccard Index
Индекс Жаккара похож на Rand Index, только не учитывает пары элементов находящиеся в разные классах и разных кластерах ( ).
Имеет область определения от 0 до 1, где 1 - полное совпадение кластеров с заданными классами, а 0 - отсутствие совпадений.
Folkes and Mallows Index
Индекс Fowlkes-Mallows используется для определения сходства между двумя кластерами.
Более высокое значение индекса означает большее сходство между кластерами. Этот индекс также хорошо работает на зашумленных данных.
Внешние метрики оценки качества
Данные метрики оценивают качество структуры кластеров опираясь только непосредственно на нее, не используя внешней информации.
Компактность кластеров (Cluster Cohesion)
Идея данного метода в том, что чем ближе друг к другу находятся объекты внутри кластеров, тем лучше разделение.
Таким образом, необходимо минимизировать внутриклассовое расстояние, например, сумму квадратов отклонений (within cluster sum of squares):
- , где - количество кластеров.
Отделимость кластеров (Cluster Separation)
В данном случае идея противоположная - чем дальше друг от друга находятся объекты разных кластеров, тем лучше.
Поэтому здесь стоит задача максимизации суммы квадратов отклонений (between cluster sum of squares):
- , где - количество кластеров.
Hubert Г statistic
Данная метрика отражает среднее расстояние между объектами разных кластеров:
где
, - матрица близости, аМожно заметить, что два объекта влияют на
, только если они находятся в разных кластерах.Чем больше значение метрики - тем лучше.
Относительные оценки качества
Индекс Данна (Dunn Index)
Индекс Данна имеет множество вариаций, оригинальная версия выглядит следующим образом:
- ,
где:
- - межкластерное расстояние, ,
- - диаметр кластера, .
Силуэт (Silhouette)
Значение силуэта показывает, насколько объект похож на свой кластер по сравнению с другими кластерами.
Оценка для всей кластерной структуры:
- ,
где:
- - среднее расстояние от до других объектов из кластера (компактность),
- - среднее расстояние от до объектов из другого кластера (отделимость).
Можно заметить, что
- .
Чем ближе данная оценка к 1, тем лучше.
Есть также упрощенная вариация силуэта:
и вычисляются через центры кластеров.Calinski–Harabasz index
Компактность основана на расстоянии от точек кластера до их центроидов, а разделимость - на расстоянии от центроид кластеров до глобального центроида.
C-Index
C-Index - нормализованная оценка компактности:
- ,
где:
- ,
- - сумма минимальных (максимальных) расстояний между всех парами объектов во всем датасете.
Davies–Bouldin Index
Это, возможно, одна из самых используемых мер оценки качества кластеризации.
Она вычисляет компактность как расстояние от объектов кластера до их центроидов, а отделимость - как расстояние между центроидами.
- ,
где:
Существует еще одна вариация данной метрики, которая была предложена автором вместе с основной версией:
Score function
- ,
где:
- ,
Сравнение
По результатам исследования[1] на искусственных датасетах наилучшие результаты показали индексы Silhouette(Sil), Davies–Bouldin^*(DB^*) и Calinski–Harabasz(CH). На реальных датасетах лучше всех проявил себя Score function. Однако, на определенных данных другие индексы могут показать лучшие результаты (так, например, на зашумленных данных Calinski–Harabasz(CH) дает оценки значительно хуже).