Теория сложности 2019
Версия от 17:19, 24 февраля 2019; 188.130.155.155 (обсуждение)
- Докажите, что объединение и пересечение языков из $P$ является языком из $P$
- Докажите, что дополнение языка из $P$ является языком из $P$
- Докажите, что конкатенация и замыкание Клини языков $P$ является языком из $P$
- Докажите, что объединение и пересечение языков из $NP$ является языком из $NP$
- Докажите, что конкатенация и замыкание Клини языков $NP$ является языком из $NP$
- Почему рассуждение из задания 2 не применимо к языкам из $NP$?
- Когда мы задаем числа, мы обычно записываем их в десятичной системе счисления. Докажите, что выбор для формата ввода любой системы счисления с основанием $b \ge 2$ не влияет на принадлежность языка классу $P$.
- В унарной системе счисления число $n$ задаётся как $1^n$. Докажите, что язык $FAC.UNARY = \{\langle 1^n, 1^q \rangle |$ у $n$ существует делитель $t$, такой что $2 \le t \le q < n\}$ лежит в $P$.
- В унарной системе счисления число $n$ задаётся как $1^n$. Докажите, что язык $UNARY.SUBSET.SUM = \{\langle 1^s, [1^{a_1}, 1^{a_2}, \ldots, 1^{a_n}] \rangle |$ можно выбрать подмножество $\{a_1, a_2,\ldots, a_n\}$ с суммой $s\}$ лежит в $P$.
- Завершите доказательство, что $PRIMES \in NP$, доказав, суммарный размер рекурсивных сертификатов простоты простых делителей $n-1$ и время на их проверку является полиномом от длины $n$.
- Задача останова $HALT = \{\langle m, x \rangle | m$ - машина Тьюринга, $m(x) = 1\}$. Докажите, что $HALT$ является $NP$-трудной. Является ли она $NP$-полной?
- Изоморфизм подграфа $NP$-полный. Докажите $NP$-полноту следующего языка. Множество пар $\{\langle G_1, G_2 \rangle | G_1$ содержит $G_2$ как подграф $\}$.
- Задача реберного покрытия обратных связей $NP$-полна. Докажите $NP$-полноту следующего языка. Множество пар $\{\langle G, k \rangle | G$ - ориентированный граф, который содержит подмножество из $k$ ребер, такое, что любой цикл $G$ содержит хотя бы одно из выбранных ребер $\}$.
- Задача целочисленного линейного программирования $NP$-полна. Докажите $NP$-полноту следующего языка. Множество систем линейных ограничений, которые имеют целочисленное решение.
- Задача поиска доминирующего множества $NP$-полна. Докажите $NP$-полноту следующего языка. Множество пар $\{\langle G, k \rangle | G$ содержит множество из $k$ вершин, таких, что любая вершина $G$ либо выбрана, либо имеет выбранного соседа $\}$.
- Задача пожарных депо. Докажите $NP$-полноту следующего языка. Множество троек $\{\langle G, k, d \rangle | G$ содержит множество из $k$ вершин, таких, что любая вершина $G$ имеет выбранную вершину на расстоянии не больше $d\}$.
- Задача о половинной клике. Докажите $NP$-полноту следующего языка. Множество графов $\{G | G$ имеет клику, содержащую ровно половину вершин $G\}$.
- Задача о раскраске $NP$-полна. Докажите $NP$-полноту следующего языка. Множество пар $\{\langle G, k\rangle | G$ имеет правильную раскраску в $k$ цветов $\}$.
- Задача о раскраске в три цвета $NP$-полна. Докажите $NP$-полноту следующего языка. Множество графов $\{ G | G$ имеет правильную раскраску в три цвета $\}$. Что можно сказать про раскраску в два цвета?
- Докажите, что задача о гамильтоновом цикле в неориентированном графе $NP$-полна.
- Докажите, что задача о гамильтоновом пути в ориентированном графе $NP$-полна.
- Докажите, что задача о гамильтоновом пути в неориентированном графе $NP$-полна.
- Задача коммивояжера $NP$-полна. Докажите $NP$-полноту следующего языка. Множество пар $\{ \langle G, k\rangle | G$ --- взвешенный ориентированный граф, который содержит гамильтонов цикл весом не больше $k \}$.
- Задача о рюкзаке $NP$-полна. Докажите $NP$-полноту следующего языка. Даны предметы с весом $w_i$ и стоимостью $v_i$. Язык наборов $\{ \langle s, [(v_1, w_1), (v_2, w_2), \ldots (v_n, w_n)], k\rangle | $ можно выбрать предметы с суммарным весом не более $s$ и суммарной стоимостью не менее $k \}$.