Дополнение к ранжированию

Материал из Викиконспекты
Версия от 10:39, 9 апреля 2020; Nik-Egorov (обсуждение | вклад) (Сильный подпорядок)
Перейти к: навигация, поиск


Порядки

При рассмотрении различных ситуаций, связанных с извлечением экспертных знаний, возникает потребность каким-либо упорядочить все множество оценок, затрагивая уже понятие группового ранжирования. Положим, имеется конечное множество Χ объектов (например, экспертных оценок или критериев) и m экспертов, пронумерованных индексами 1,2... m. каждый i-й эксперт выставляет рейтинг, порождая порядок.

Слабое ранжирование.Представления

Слабое упорядовачивание

Определение:
Бинарное отношение [math]\lt [/math] на множестве [math]X x X[/math], которое является частично упорядоченным, называется слабым упорядочиванием (англ. weak ordering), если оно обладает следующими свойствами:
  • Иррефлексивность (англ. irreflexivity): [math]\forall a \in X:[/math] если [math]a \lt b[/math], то [math]b \lt a[/math] - не выполняется.
  • Ассиметричность (англ. asymmetry): [math]\forall a, b \in X:[/math] если [math]a \lt b[/math], то не [math] b \lt a [/math].
  • Транзитивность (англ. transitivity): [math]\forall a, b, c \in X:[/math] если [math]a\lt b[/math] и [math]b\lt c[/math], то [math]a\lt c[/math].
  • Транзитивность несравнимости (англ. transitivity of incomparability): [math]\forall a, b, d \in X:[/math] если [math]a[/math] несравнимо с [math]b[/math], и [math]b[/math] не сравнимо с [math]d[/math], то [math]a[/math] несравнимо с [math]d[/math].
Примечание: Строгое определение несравнимости: [math]\forall a, b \in X:[/math], если [math]¬b\lt a[/math] и [math]¬a\lt b[/math] и [math]a\not=b[/math], то [math]a\sim b[/math].


Рассмотрим случаи, определеяющее частичное упорядочение как:

  • Сильное: [math]\forall a, b \in X:[/math] [math]a \lt b[/math] и [math]b \lt a[/math], те если ~ [math]\emptyset[/math].
  • Слабое: [math]\forall a, b, c \in X:[/math] если [math]a\sim b\sim c[/math], то [math]a\sim b[/math] и [math]a=c[/math].

Можно заключить, что любое cильное упорядовачивание есть слабое. Отношение несравнимости является отношением эквивалентности для всех своих разбиений на множестве [math]X[/math], что являются линейно упорядоченными.

Сильный подпорядок

Определение:
Сильный подпорядок — такой подпорядок, на котором присутствует отношение связанности.

Сильный подпорядок [math]≤ \in XxX[/math] обладает рядом следующих свойств:

  • Транзитивность: [math]\forall a, b, c \in X:[/math], если [math]a≤b[/math] и [math]b≤c \Rightarrow a≤c[/math].
  • Связанности: [math]\forall a, b \in X:[/math]выполнимо либо [math]a≤b[/math], либо [math]b≤a[/math].

Если в любом сильном подпорядке [math]\exists a,b : a≤b[/math] и [math]b≤a[/math], то на нем определено отношение эквивалентности. Поскольку операция определена для всех элементов, такие подпорядки еще называют отношением предпочтения.

Упорядоченное разбиение

Сравнения

Вещественная функция

Удобство использования слабого ранжирования в том, что его элементы могут быть представленны единственным образом с помощью вещественных функций. Рассмотрим следующую теорему.

Теорема:
Для любого частичного упорядовачивания [math]\lt \in XxX[/math] слабое тогда и только тогда, когда существует [math]\lt _t\in YxY[/math] и отображение [math] u: X \rightarrow Y :[/math] если [math]a\lt b[/math], то [math]u(a) \lt _t u(b)[/math] и наоборот.

Таким образом, чтобы имели место быть:

  • частичный подпорядок: для [math]a≤b[/math] тогда и только тогда, когда [math]u(a)≤u(b)[/math].
  • эквивалентность: для [math]a \sim b[/math] тогда и только тогда, когда [math]u(a)=u(b)[/math].

Ограничения:

- Лексикографические предпочтения
 Хоть и на любом конечном множестве может определена ранжирующая функция, однако для случая лексикографического порядка функция не определена на [math]R^n[/math]. 
- Инъективность
 В случае, если бы [math]u[/math] являлась бы инъективной функцей, что класс эквивалентности двух элементов множества [math]Y[/math] мог бы переходить в более широкий соответсвий класс на множестве [math]X[/math].
- Сюрьективность
 Если на [math]u[/math] вводятся ограничения, чтобы быть сюръективной функцией, то при отображении элементов некого класса на [math]Y[/math] возможно соответсвие ему меньшего или вовсе пустого класса на [math]X[/math]. 
Кусочная последовательность

Для любого конечного множества [math]X[/math], на котором задано отношение слабого упорядовачивания и [math]\exists u: X \rightarrow Y [/math], может быть применимо моделирование с помощью кусочных последовательностей. Рассмотрим пример. Положим, что

[math]X=\{ a, b, c, d, e \}[/math]
[math]u(a) = u(c) = 0, u(e) = 2, u(b) = u(d) = 5[/math]

Тогда слабое ранжирование [math]\lt [/math] представляется в виде следующего:

[math]\{ a, c \} \{ e \} \{ b, d \} [/math]


Сильное ранжирование

Supervised алгоритмы ранжирования

OC-SVM