Функциональные зависимости: замыкание, эквивалентность и правила вывода

Материал из Викиконспекты
Версия от 23:24, 28 декабря 2020; Darkey (обсуждение | вклад) (Эквивалентность множеств функциональных зависимостей)
Перейти к: навигация, поиск

Функциональные зависимости

Определение и примеры

Правила вывода функциональных зависимостей

Замыкание множества функциональных зависимостей

Определение:
Замыкание множества функциональных зависимостей [math]S[/math] - множество всех функциональных зависимостей, обозначаемое [math]S^+[/math], которые следуют из заданного множества функциональных зависимостей [math]S[/math].

Построение

Set<E> buildClosure(s: Set<E>): 
  closure = Set<E>(s.addAll())
  changed = true
  while (changed): 
    changed = false
    for f in closure:
       for rule in rules:     //rules - правила вывода
         new_f = rule.apply(f)
         changed = closure.add(new_f)    //add - возвращает true, если элемент был добавлен, false - иначе
  return closure

Эквивалентность множеств функциональных зависимостей

Здесь и далее [math]S, P[/math] - множества функциональных зависимостей.

Определение:
[math]S[/math] слабее [math]P[/math] ([math]P[/math] накрывает [math]S[/math]) тогда и только тогда, когда [math]S^+[/math] является подмножеством [math]P^+[/math]: [math]S \sqsubset P \Leftrightarrow S^+ \subset P^+[/math]


Определение:
[math]S[/math] эквивалентно [math]P[/math] ([math]P[/math] накрывает [math]S[/math])
[math]S \equiv P\!\Leftrightarrow\! S \sqsubset P\! \textrm{and}\! P \sqsubset S\! \Leftrightarrow\! S^+ = P^+ [/math]