Распознавание изогнутого текста
Распознавание текста — важная задача машинного обучения, решение которой позволит получать огромное количество информации из окружающего мира без участия человека. Распознавание изогнутого текста, в частности, одна из проблем, лежащих на пути решения данной задачи.
Людей, работающих в данном направлении, для удобства условно будем называть "исследователями".
Вступление
В решении задачи распознавания текста двумя основными составляющими являются определение области текста и распознавание содержимого области. В сообществе исследователей выделяют три разных вида ориентации текста - horizontal, multi-oriented, curved (усл. горизонтальная, множественная, изогнутая). Очевидно, что правильность определения области текста напрямую влияет на качество работы распознающих моделей. Долгое время распознавание изогнутого текста казалось крайне сложной задачей - до тех пор, пока не появились способы весьма точно определять контуры объектов на изображениях ([см./например] Mask R-CNN). Использование методов сегментации изображения позволяет добиться хороших результатов на существующих датасетах.
Модели, способные распознавать изогнутый текст
Все представленные ниже модели показывают хорошие результаты, независимо от ориентации текста:
- TextFuseNet
- CharNet H-88
- TextCohesion
- SA-Text
- PAN-640
- DB-ResNet50
- CRAFT
- SPCNET
- FTSN
- TextFilled
- TextSnake
- Mask TextSpotter
- CTD+TLOC (?)
- PAN
- PSENet
- SLPR