Сингулярное разложение
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Сингулярное разложение (англ. Singular Value Decomposition) — декомпозиция вещественной матрицы с целью ее приведения к каноническому виду.
| Теорема (Сингулярное разложение): |
У любой матрицы размера существует разложение на матрицы : .
При этом, матрицы и являются ортогональными, а матрица — диагональной. |
Свойства
Пусть дана матрица . Тогда можно представить в следующем виде:
.
Основные свойства сингулярного разложения:
- -матрица ортогональна, ,столбцы — собственные векторы матрицы ;
- -матрица ортогональна, ,столбцы — собственные векторы матриц ;
- -матрица — диагональная, , — собственные значения матриц и ,
— сингулярные числа матрицы .
Матрицы ортогональные, — диагональная:
,, , .
Усеченное разложение
Усеченное разложение — когда из лямбд, остаются только первые чисел, а остальные полагаются равными нулю.
Значит у матриц и остаются только первые столбцов, а матрица становится квадратной размером .
.
Полученная матрица хорошо приближает исходную матрицу . Более того, является наилучшим низкоранговым приближением с точки зрения средне-квадратичного отклонения.