Вопросы к экзамену по функциональному анализу за 5 семестр
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
- Определение МП, замыкание в МП.
- Принцип вложенных шаров в полном МП.
- Теорема Бэра о категориях.
- Критерий компактности Хаусдорфа в МП.
- Пространство : метрика, покоординатная сходимость.
- Норма в линейном множестве, определение предела по норме, арифметика предела.
- Эквивалентность норм в конечномерном НП.
- Замкнутость конечномерного линейного подмножества НП.
- Лемма Рисса о почти перпендикуляре, пример ее применения.
- Банаховы пространства на примерах и .
- Определение скалярного произведения, равенство параллелограмма, неравенство Шварца.
- Наилучшее приближение в НП в случае конечномерного подпространства.
- Наилучшее приближение в унитарном пространстве, неравенство Бесселя.
- Определение Гильбертова пространства, сепарабельность и полнота.
- Теорема Рисса-Фишера, равенство Парсеваля.
- Наилучшее приближение в для случая выпуклого,замкнутого множества, .
- Счетно-нормированные пространства, метризуемость.
- Условие нормируемости СНТП.
- Функционал Минковского.
- Топология векторных пространств.
- Теорема Колмогорова о нормируемости ТВП.
- Коразмерность ядра линейного функционала.
- Непрерывный линейный функционал и его норма.
- Связь между непрерывностью линейного функционала и замкнутостью его ядра.
- Продолжение по непрерывности линейного функционала со всюду плотного линейного подмножества НП.
- Теорема Хана-Банаха для НП (сепарабельный случай).
- Два следствия из теоремы Хана-Банаха.
- Теорема Рисса об общем виде линейного непрерывного функционала в .
- Непрерывный линейный оператор и его норма.
- Продолжение линейного оператора по непрерывности.
- Полнота пространства .
- Теорема Банаха-Штейнгауза.
- Условие замкнутости множества значений линейного оператора на базе априорной оценки решения операторного уравнения.
- Условие непрерывной обратимости лин. оператора.
- Теорема Банаха о непрерывной обратимости .
- Лемма о множествах .
- Теорема Банаха об обратном операторе.
- Теорема о замкнутом графике.
- Теорема об открытом отображении.
- Теорема о резольвентном множестве.
- Теорема о спектральном радиусе.
- Аналитичность резольвенты.
- Непустота спектра ограниченного оператора.