Теорема о компактности сопряжённого оператора
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Пусть является компактным оператором. Тогда сопряженный к нему оператор также является компактным.
Доказательство теоремы
Итак, рассмотрим оператор . По определению сопряженного оператора, если , то . Будем последовательны.
1. Для доказательства необходимо показать, что множество будет относительно компактно в . Для этого надо показать, что если взята последовательность такая, что , то можно выбрать такую, что сходится в .
2. Рассмотрим в единичный замкнутый шар . По компактности оператора будет метрическим компактом. Рассмотрим сужение функционалов на .
3. Докажем равностепенную непрерывность этой последовательности: рассмотрим . Норма
не зависит от , а следовательно равностепенно непрерывна.
4. Выполняется и равномерная ограниченность последовательности. Для любого :
- .
5. Таким образом равномерно ограничена и равностепенно непрерывна, следовательно, по теореме Арцела — Асколи из нее можно выделить равномерно сходящуюся последовательность в .
Для доказательства теоремы осталось показать, что сходится в . Для этого достаточно выяснить, что равномерно сходится (при устремлении к бесконечности) на .
6. Рассмотрим . По равномерной сходимости на : .
7. Следовательно, для любого верно . Замечая, что , приходим к равномерной сходимости на .
Таким образом, теорема доказана.