Теорема Карпа — Липтона

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.
Лемма:
Пусть [math]\mathrm{SAT} \in \mathrm{P}/poly [/math]. Тогда существует такое семейство схем полиномиального размера, что для любой входной формулы [math]\phi[/math] возвращается последовательность бит, удовлетворяющая [math]\phi[/math], если она существует, или же последовательность нулей в другом случае.
Доказательство:
[math]\triangleright[/math]

Пусть нам дана формула [math]\phi[/math] с [math]n[/math] переменными.
Попробуем построить схемы [math]C_n^1, \ldots, C_n^n[/math], работающие следующим образом:

  • [math]C_n^1(\phi) = 1 \Leftrightarrow \exists x_2,\ldots, x_n: \phi(1,x_2, \ldots, x_n)=1[/math];
  • [math] \ldots [/math]
  • [math]C_n^i(\phi, b_1, \ldots, b_{i-1}) = 1 \Leftrightarrow \exists x_{i+1},\ldots, x_n: \phi(b_1, \ldots, b_{i-1},1,x_{i+1}, \ldots, x_n)=1[/math];
  • [math] \ldots [/math]
  • [math]C_n^n(\phi, b_1, \ldots, b_{n - 1}) = 1 \Leftrightarrow \phi(b_1, \ldots, b_{n-1}, 1)=1[/math].

Задача определения возвращаемого значения таких схем тогда будет эквивалентна задаче [math]\mathrm{SAT}[/math]. По условию [math]\mathrm{SAT} \in \mathrm{P}/poly [/math], следовательно, такие схемы существуют и каждая из них будет полиномиального размера. Рассмотрим последовательность: [math]b_1=C_n^1(\phi), b_2=C_n^2(\phi, b1), \ldots, b_n=C_n^n(\phi, b_1, \ldots, b_{n-1})[/math]. Очевидно, что это будет последовательностью бит, которая удовлетворит [math]\phi[/math], или же последовательностью нулей, если [math]\phi[/math] удовлетворить нельзя. Если при [math]b_1=1[/math] формулу [math]\phi[/math] удовлетворить возможно, то есть [math]C_n^1(\phi)=1[/math], то нужно взять [math]b_1=1[/math], если же нет, если [math]C_n^1(\phi)=0[/math], тогда имеет смысл искать следующие биты последовательности, удовлетворяющей [math]\phi[/math] только при [math]b_1=0[/math]. Следующие биты последовательности выбираются по аналогии.

За [math]C_n[/math] обозначим схему, строящую описанным алгоритмом требуемую последовательность. Очевидно, что она будет полиномиального размера (как совокупность [math]n[/math] схем полиномиального размера). Это и есть требуемая схема для [math]\phi[/math].
[math]\triangleleft[/math]


Теорема (Карп, Липтон):
Если [math]\mathrm{NP} \subset \mathrm{P}/poly[/math], то [math]\Sigma_2 = \Pi_2[/math].
Доказательство:
[math]\triangleright[/math]

Рассмотрим язык [math]L \in \mathrm{\Pi_2}[/math]: [math] \exists p \in poly, \phi \in \mathrm{\widetilde{P}}, \forall x \in L \Leftrightarrow \forall y \ \exists z : |y|,|z| \le p(|x|), \phi(x, y, z) = 1[/math].
Для фиксированного [math]x[/math] [math]\phi[/math] можно рассматривать как формулу с [math]n[/math] битовыми переменными (так как мы знаем, что [math]\phi \in \mathrm{\widetilde{P}}[/math], а [math]\mathrm{P} \subset \mathrm{P}/poly[/math]), где [math]n[/math] — полином от длины входа [math]x[/math] (из-за ограничений накладываемых по определению класса [math]\mathrm{\Pi_2}[/math] на [math]|y|, |z|)[/math]. Для заданных [math]x[/math] и [math]y[/math] научимся находить такой [math]z[/math], что [math]\phi(x,y,z)=1[/math], если это возможно. Подставим значения [math]x[/math] и [math]y[/math] в формулу [math]\phi[/math]. Теперь [math]\phi[/math] зависит только от [math]z[/math]: [math]\phi_{xy}(z)[/math]. Из предыдущей леммы мы установили существования семейство схем полиномиального размера [math]C_1, \ldots, C_n, \ldots [/math] Запустим схему [math]C_{p(|x|)}[/math] на [math]\phi_{xy}[/math]. Эта схема вернет нам такое значение [math]z[/math], что [math]\phi(x,y,z)=1[/math], если [math]\phi(x,y,z) [/math] удовлетворима для заданных [math]x[/math] и [math]y[/math], или же последовательность нулей.
Тогда определение языка [math]L[/math] можно переписать: [math]L = \{x \bigm| \forall y \ \phi(x, y, C_{p(|x|)}(\phi_{xy})) = 1\}[/math].
Рассмотрим язык [math]L_1 = \{x\bigm|\exists G \ \forall y \ \phi(x, y, G(\phi_{xy})) = 1\}[/math].
Покажем, что [math]L=L_1[/math]:

  • [math] L \subset L_1[/math]

Очевидно. Можно за [math]G[/math] взять [math]C_{p(|x|)}[/math].

  • [math]L_1 \subset L[/math]

Мы докажем это утверждение, если покажем, что если какое-то слово не принадлежит [math]L[/math], то оно не принадлежит и [math]L_1[/math].
Если [math]\exists y \ \forall z \ \phi(x,y,z)=0 [/math], тогда [math]\nexists G \ \forall y \ \phi(x, y, G(\phi_{xy}))=1[/math].
Таким образом [math]L =\{x\bigm|\exists G, |G| \lt p(|x|) \ \forall y, |y|\lt p(|x|) \ \phi(x, y, G(\phi_{xy})) = 1\}[/math]. Следовательно, [math]L \in \Sigma_2[/math]. Значит, [math]\mathrm{\Pi_2} \subset \mathrm{\Sigma_2} [/math].
Докажем теперь, что [math]\mathrm{\Sigma_2} \subset \mathrm{\Pi_2} [/math]. Рассмотрим язык [math]L \in \mathrm{\Sigma_2}[/math]: [math]L \in \mathrm{\Sigma_2} \Rightarrow \overline{L} \in \mathrm{\Pi_2} \Rightarrow \overline{L} \in \mathrm{\Sigma_2} \Rightarrow L \in \mathrm{\Pi_2}[/math]. Получается, что [math]\mathrm{\Sigma_2} \subset \mathrm{\Pi_2} [/math].

Итого, [math]\mathrm{\Sigma_2} = \mathrm{\Pi_2} [/math].
[math]\triangleleft[/math]